These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 6819238)
1. A system for electron therapy dosimetry surveys with thermoluminescence dosimeters. Soares CG; Ehrlich M; Padikal TN; Gromadzki ZC Int J Appl Radiat Isot; 1982 Nov; 33(11):1007-13. PubMed ID: 6819238 [TBL] [Abstract][Full Text] [Related]
2. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV). Tedgren AC; Hedman A; Grindborg JE; Carlsson GA Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372 [TBL] [Abstract][Full Text] [Related]
3. Energy correction factors of LiF powder TLDs irradiated in high-energy electron beams and applied to mailed dosimetry for quality assurance networks. Marre D; Ferreira IH; Bridier A; Björeland A; Svensson H; Dutreix A; Chavaudra J Phys Med Biol; 2000 Dec; 45(12):3657-74. PubMed ID: 11131191 [TBL] [Abstract][Full Text] [Related]
4. In-phantom response of LiF TLD-100 for dosimetry of 192Ir HDR source. Pradhan AS; Quast U Med Phys; 2000 May; 27(5):1025-9. PubMed ID: 10841406 [TBL] [Abstract][Full Text] [Related]
5. Determination of absorbed dose to water around a clinical HDR (192)Ir source using LiF:Mg,Ti TLDs demonstrates an LET dependence of detector response. Carlsson Tedgren A; Elia R; Hedtjarn H; Olsson S; Alm Carlsson G Med Phys; 2012 Feb; 39(2):1133-40. PubMed ID: 22320824 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance. Liuzzi R; Savino F; D'Avino V; Pugliese M; Cella L PLoS One; 2015; 10(10):e0139287. PubMed ID: 26427065 [TBL] [Abstract][Full Text] [Related]
7. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source. Lucas PA; Aubineau-Lanièce I; Lourenço V; Vermesse D; Cutarella D Med Phys; 2014 Jan; 41(1):011711. PubMed ID: 24387503 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of megavolt radiation dosimetry using thermoluminescent lithium fluoride. Rudén BI; Bengtsson LG Acta Radiol Ther Phys Biol; 1977 Apr; 16(2):157-76. PubMed ID: 405844 [TBL] [Abstract][Full Text] [Related]
9. Correction factors kE and kQ for LiF-TLDs for dosimetry in megavoltage electron and photon beams. Bruggmoser G; Saum R; Saum F; Gainey M; Pychlau C; Kapsch RP; Zink K Z Med Phys; 2015 Jun; 25(2):186-91. PubMed ID: 24973310 [TBL] [Abstract][Full Text] [Related]
10. Absorbed dose measurements from a D'Arienzo M; Pimpinella M; De Coste V; Capogni M; Ferrari P; Mariotti F; Iaccarino G; Ungania S; Strigari L Phys Med; 2020 Jan; 69():127-133. PubMed ID: 31901837 [TBL] [Abstract][Full Text] [Related]
11. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to 60Co. Nunn AA; Davis SD; Micka JA; DeWerd LA Med Phys; 2008 May; 35(5):1859-69. PubMed ID: 18561661 [TBL] [Abstract][Full Text] [Related]
12. Energy responses of the LiF series TL pellets to high-energy photons in the energy range from 1.25 to 21 MV. Kim JL; Lee JI; Ji YH; Kim BH; Kim JS; Chang SY Radiat Prot Dosimetry; 2006; 119(1-4):353-6. PubMed ID: 16644960 [TBL] [Abstract][Full Text] [Related]
13. Influence of the variation of energy spectra with depth in the dosimetry of 192Ir using LiF TLD. Meigooni AS; Meli JA; Nath R Phys Med Biol; 1988 Oct; 33(10):1159-70. PubMed ID: 3194446 [TBL] [Abstract][Full Text] [Related]
14. Variations in dose response with x-ray energy of LiF:Mg,Cu,P thermoluminescence dosimeters: implications for clinical dosimetry. Duggan L; Hood C; Warren-Forward H; Haque M; Kron T Phys Med Biol; 2004 Sep; 49(17):3831-45. PubMed ID: 15470908 [TBL] [Abstract][Full Text] [Related]
15. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods. Vestad TA; Malinen E; Olsen DR; Hole EO; Sagstuen E Phys Med Biol; 2004 Oct; 49(20):4701-15. PubMed ID: 15566169 [TBL] [Abstract][Full Text] [Related]
16. Thermoluminescence dosimetry in the muGy range. Theoretical and experimental investigations of the optimum performance of a LiF-TLD system. Spanne P Acta Radiol Suppl; 1979; 360():1-118. PubMed ID: 233606 [No Abstract] [Full Text] [Related]
17. Thermoluminescent dosimetry in electron beams: energy dependence. Robar V; Zankowski C; Olivares Pla M; Podgorsak EB Med Phys; 1996 May; 23(5):667-73. PubMed ID: 8724739 [TBL] [Abstract][Full Text] [Related]
18. Using radiation damage to obtain a large quantity of matched-sensitivity thermoluminescent dosimeters. Elliott JH Health Phys; 1985 Mar; 48(3):309-14. PubMed ID: 3980217 [TBL] [Abstract][Full Text] [Related]
19. Electron fluence correction factors for various materials in clinical electron beams. Olivares M; DeBlois F; Podgorsak EB; Seuntjens JP Med Phys; 2001 Aug; 28(8):1727-34. PubMed ID: 11548943 [TBL] [Abstract][Full Text] [Related]
20. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti. Hauri P; Schneider U Z Med Phys; 2018 Apr; 28(2):96-109. PubMed ID: 28807441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]