These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 681925)

  • 1. Postsynaptic potentials in pacemaker cells: a correlation of behavior in command cells of an electric fish.
    Feng AS; Bullock TH
    J Neurobiol; 1978 Jul; 9(4):255-66. PubMed ID: 681925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single unit activity in the mesencephalon of Sternarchus.
    Schlegel P
    J Physiol (Paris); 1979; 75(4):421-8. PubMed ID: 512974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens.
    Dunlap KD; Zakon HH
    Horm Behav; 1998 Aug; 34(1):30-8. PubMed ID: 9735226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish.
    Curti S; Comas V; Rivero C; Borde M
    Neuroscience; 2006 Jun; 140(2):491-504. PubMed ID: 16563638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia.
    Keller CH; Heiligenberg W
    J Comp Physiol A; 1989 Feb; 164(5):565-76. PubMed ID: 2565397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT
    J Neurobiol; 2006 Jan; 66(1):1-18. PubMed ID: 16187302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia.
    Heiligenberg W; Rose G
    J Neurosci; 1985 Feb; 5(2):515-31. PubMed ID: 3973680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia.
    Kawasaki M; Heiligenberg W
    J Comp Physiol A; 1988 Jan; 162(1):13-21. PubMed ID: 3351783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia.
    Keller CH; Maler L; Heiligenberg W
    J Comp Neurol; 1990 Mar; 293(3):347-76. PubMed ID: 1691214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgens alter electric organ discharge pulse duration despite stability in electric organ discharge frequency.
    Few WP; Zakon HH
    Horm Behav; 2001 Nov; 40(3):434-42. PubMed ID: 11673917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of neurons in the complex of the nucleus electrosensorius of Sternopygus and Eigenmannia: diencephalic substrates for the evolution of the jamming avoidance response.
    Green RL; Rose GJ
    Brain Behav Evol; 2004; 64(2):85-103. PubMed ID: 15205544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of temporal-pattern sensitive neurons in the midbrain of weakly electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Physiol Paris; 2002; 96(5-6):531-7. PubMed ID: 14692500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the Jamming Avoidance Response: weakly electric fish respond to the envelope of social electrosensory signals.
    Stamper SA; Madhav MS; Cowan NJ; Fortune ES
    J Exp Biol; 2012 Dec; 215(Pt 23):4196-207. PubMed ID: 23136154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.