These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 6819433)
1. Scatter dose decrement values for rectangular fields. Bjärngard BE; Brown LH; Svensson GK Med Phys; 1982; 9(6):830-4. PubMed ID: 6819433 [TBL] [Abstract][Full Text] [Related]
2. Equation for scatter-air ratios for megavoltage radiotherapy calculations. Tatcher M Med Phys; 1976 SEP-OCT; 3(5):351-2. PubMed ID: 824542 [TBL] [Abstract][Full Text] [Related]
3. Measurements of dose from secondary radiation outside a treatment field. Kase KR; Svensson GK; Wolbarst AB; Marks MA Int J Radiat Oncol Biol Phys; 1983 Aug; 9(8):1177-83. PubMed ID: 6409854 [TBL] [Abstract][Full Text] [Related]
4. Scatter dose for wedged fields. Brown LH; Siddon RL; Bjärngard BE Phys Med Biol; 1987 Oct; 32(10):1321-6. PubMed ID: 3685100 [TBL] [Abstract][Full Text] [Related]
5. Head scatter off-axis for megavoltage x rays. Zhu TC; Bjärngard BE Med Phys; 2003 Apr; 30(4):533-43. PubMed ID: 12722805 [TBL] [Abstract][Full Text] [Related]
6. Day's integration of scatter dose with an analytical expression. Brown LH; Svensson GK; Bjärngard BE Med Phys; 1981; 8(2):184-9. PubMed ID: 6798384 [TBL] [Abstract][Full Text] [Related]
7. Tenth value layers for 60Co gamma rays and for 4, 6, 10, 15, and 18 MV x rays in concrete for beams of cone angles between 0 degrees and 14 degrees calculated by Monte Carlo simulation. Jaradat AK; Biggs PJ Health Phys; 2007 May; 92(5):456-63. PubMed ID: 17429304 [TBL] [Abstract][Full Text] [Related]
8. An intercomparison between two methods of obtaining percentage depth doses for irregular shaped fields and comparison of each method with experimental data for 60Co and 10 MV X rays. Wrede D; Tai D; Edwards F; Coffey C; Schroader K Br J Radiol; 1979 May; 52(617):398-404. PubMed ID: 109159 [TBL] [Abstract][Full Text] [Related]
9. "Zero-field" dose data for 60Co and other high-energy photon beams in water. Nizin P; Qian GX; Rashid H Med Phys; 1993; 20(5):1353-60. PubMed ID: 8289716 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo calculations of scatter dose for small field sizes in a 60Co beam. Kijewski PK; Bjärngard BE; Petti PL Med Phys; 1986; 13(1):74-7. PubMed ID: 3951412 [TBL] [Abstract][Full Text] [Related]
11. Peak scatter factors for high energy photon beams. Li XA Med Phys; 1999 Jun; 26(6):962-6. PubMed ID: 10436898 [TBL] [Abstract][Full Text] [Related]
12. Physical factors affecting absorbed dose to the skin from cobalt-60 gamma rays and 25-MV x rays. Gagnon WF; Horton JL Med Phys; 1979; 6(4):285-90. PubMed ID: 113655 [TBL] [Abstract][Full Text] [Related]
13. A Monte Carlo study on internal wedges using BEAM. van der Zee W; Welleweerd J Med Phys; 2002 May; 29(5):876-85. PubMed ID: 12033584 [TBL] [Abstract][Full Text] [Related]
14. Differences in wedge factor determination in air using a PMMA mini-phantom or a brass build-up cap. Heukelom S; Lanson JH; Mijnheer BJ Med Phys; 1997 Dec; 24(12):1986-91. PubMed ID: 9434981 [TBL] [Abstract][Full Text] [Related]
15. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams. Richmond N; Allen V; Daniel J; Dacey R; Walker C Med Dosim; 2015; 40(1):58-63. PubMed ID: 25454113 [TBL] [Abstract][Full Text] [Related]
16. Electron disequilibrium in high-energy x-ray beams. Hannallah D; Zhu TC; Bjärngard BE Med Phys; 1996 Nov; 23(11):1867-71. PubMed ID: 8947900 [TBL] [Abstract][Full Text] [Related]
17. Extrafocal radiation: a unified approach to the prediction of beam penumbra and output factors for megavoltage x-ray beams. Sharpe MB; Jaffray DA; Battista JJ; Munro P Med Phys; 1995 Dec; 22(12):2065-74. PubMed ID: 8746712 [TBL] [Abstract][Full Text] [Related]
18. Revision of tissue-maximum ratio and scatter-maximum ratio concepts for cobalt 60 and higher energy x-ray beams. Khan FM; Sewchand W; Lee J; Williamson JF Med Phys; 1980; 7(3):230-7. PubMed ID: 6771511 [TBL] [Abstract][Full Text] [Related]