BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 6819434)

  • 1. Phosphorus activation neutron dosimetry and its application to an 18-MV radiotherapy accelerator.
    Bading JR; Zeitz L; Laughlin JS
    Med Phys; 1982; 9(6):835-43. PubMed ID: 6819434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and thermal neutron profiles for a 25-MV x-ray beam.
    Price KW; Nath R; Holeman GR
    Med Phys; 1978; 5(4):285-9. PubMed ID: 98695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the measurement of photo-neutron for15 MV photon beam from medical linear accelerator under different irradiation geometries using passive detectors.
    Thekkedath SC; Raman RG; Musthafa MM; Bakshi AK; Pal R; Dawn S; Kummali AH; Huilgol NG; Selvam TP; Datta D
    J Cancer Res Ther; 2016; 12(2):1060-4. PubMed ID: 27461699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].
    Yabuta K; Monzen H; Tamura M; Tsuruta T; Itou T; Nohtomi A; Nishimura Y
    Igaku Butsuri; 2014; 34(3):139-48. PubMed ID: 26288880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the build-up region for a high-energy photon beam?
    Ding GX; Duzenli C; Kalach NI
    Phys Med Biol; 2002 Sep; 47(17):3251-61. PubMed ID: 12361221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator.
    d'Errico F; Nath R; Tana L; Curzio G; Alberts WG
    Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron spectra and dosimetric features around an 18 mv linac accelerator.
    Barquero R; Mendez R; Vega-Carrillo HR; IƱiguez MP; Edwards TM
    Health Phys; 2005 Jan; 88(1):48-58. PubMed ID: 15596989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron leakage measurements from a medical linear accelerator.
    Palta JR; Hogstrom KR; Tannanonta C
    Med Phys; 1984; 11(4):498-501. PubMed ID: 6434916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Neutron pollution in roentgen beams from electron accelerators].
    Fehrentz D; Hassib GM; Spyropoulos B
    Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectral measurements in an intense photon field associated with a high-energy x-ray radiotherapy machine.
    Holeman GR; Price KW; Friedman LF; Nath R
    Med Phys; 1977; 4(6):508-15. PubMed ID: 412048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrons from high-energy x-ray medical accelerators: an estimate of risk to the radiotherapy patient.
    Nath R; Epp ER; Laughlin JS; Swanson WP; Bond VP
    Med Phys; 1984; 11(3):231-41. PubMed ID: 6429495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy.
    Kry SF; Howell RM; Salehpour M; Followill DS
    Med Phys; 2009 Apr; 36(4):1244-50. PubMed ID: 19472632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutron dosimetry in high energy X-ray beams of medical accelerators.
    Sohrabi M; Morgan KZ
    Phys Med Biol; 1979 Jul; 24(4):756-66. PubMed ID: 112596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast neutrons from a 25-MeV betatron.
    Fox JG; McAllister JD
    Med Phys; 1977; 4(5):387-96. PubMed ID: 409919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COMPREHENSIVE RADIATION DOSE MEASUREMENTS AND MONTE CARLO SIMULATION FOR THE 7Li(p,n) ACCELERATOR NEUTRON FIELD.
    Darvish-Molla S; Prestwich WV; Byun SH
    Radiat Prot Dosimetry; 2016 Dec; 171(4):421-430. PubMed ID: 26464524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.