BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 682112)

  • 1. The effect of propranolol and its analogs on Ca++ transport by sarcoplasmic reticulum vesicles.
    Noack E; Kurzmack M; Verjovski-Almeida S; Inesi G
    J Pharmacol Exp Ther; 1978 Aug; 206(2):281-8. PubMed ID: 682112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochemical studies on sarcoplasmic reticulum of heart and skeletal muscle.
    Agostini B; Suko J; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():125-31. PubMed ID: 1188149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on calcium transport system in cardiac sarcoplasmic vesicles and its inhibition by dl-propranolol.
    Fujita S
    Arch Int Pharmacodyn Ther; 1976 Mar; 220(1):28-44. PubMed ID: 133644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characterization of the calcium transport cycle of sarcoplasmic reticulum by inorganic phosphate including the function of magnesium (author's transl)].
    Plank B; Preis P; Hellmann G; Kolassa N; Suko J
    Wien Klin Wochenschr; 1980; 92(20):703-6. PubMed ID: 7467344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholamban-modulated Ca2+ transport in cardiac and slow twitch skeletal muscle sarcoplasmic reticulum.
    Movsesian MA; Morris GL; Wang JH; Krall J
    Second Messengers Phosphoproteins; 1992-1993; 14(3):151-61. PubMed ID: 1345340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acylphosphatase stimulates Ca2+ transport and Ca(2+)-dependent ATPase activity in cardiac sarcoplasmic reticulum.
    Fiorillo C; Nediani C; Marchetti E; Pacini A; Liguri G; Nassi P
    Biochem Mol Biol Int; 1996 May; 39(2):387-94. PubMed ID: 8799467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase.
    Antipenko AY; Spielman AI; Kirchberger MA
    J Pharmacol Exp Ther; 1999 Jul; 290(1):227-34. PubMed ID: 10381780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Energy-dependent redistribution of a lipophilic anion in sarcoplasmic reticulum vesicles and Ca2-ATPase molecules].
    Loginov VA; Levitskiĭ DO; Lebedev AV
    Biokhimiia; 1984 Jun; 49(6):958-64. PubMed ID: 6235862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of propranolol and timolol on calcium uptake by sarcoplasmic reticulum vesicles.
    Messineo FC; Katz AM
    J Cardiovasc Pharmacol; 1979; 1(4):449-59. PubMed ID: 94622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of caffeine and glycerin on the Ca transport system of sarcoplasmic reticulum fragments from frog skeletal muscles].
    Uspanova ZhK; Esyrev OV; Pak AD; Sarsenova ShS; Nusupova ZhA
    Tsitologiia; 1984 Aug; 26(8):962-5. PubMed ID: 6238465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA; Ritov VB; Kozlov IuP
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of amphiphilic molecules with biological membranes. A model for nonspecific and specific drug effects with membranes.
    Herbette L; Napolitano CA; Messineo FC; Katz AM
    Adv Myocardiol; 1985; 5():333-46. PubMed ID: 3969518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological differentiation between intracellular calcium pump isoforms.
    Engelender S; De Meis L
    Mol Pharmacol; 1996 Nov; 50(5):1243-52. PubMed ID: 8913356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Intracellular localization of the caffeine-sensitive form of Ca-dependent ATPase in the sarcoplasmic reticulum].
    Ritov VB; Vekshina OM; Budina NB
    Biull Eksp Biol Med; 1984 Sep; 98(9):317-20. PubMed ID: 6237692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoprotein formation and ADP-ATP exchange of cardiac sarcoplasmic reticulum.
    Suko J; Hasselbach W
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():117-23. PubMed ID: 1188148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca++ releaser having caffeine-like properties, acts on Ca(++)-induced Ca++ release channels of sarcoplasmic reticulum.
    Seino A; Kobayashi M; Kobayashi J; Fang YI; Ishibashi M; Nakamura H; Momose K; Ohizumi Y
    J Pharmacol Exp Ther; 1991 Mar; 256(3):861-7. PubMed ID: 1706431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anionic phospholipids decrease the rate of slippage on the Ca(2+)-ATPase of sarcoplasmic reticulum.
    Dalton KA; Pilot JD; Mall S; East JM; Lee AG
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):431-8. PubMed ID: 10455031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of [3H]ryanodine receptors and Ca++ release from rat cardiac and rabbit skeletal muscle sarcoplasmic reticulum.
    Zimányi I; Pessah IN
    J Pharmacol Exp Ther; 1991 Mar; 256(3):938-46. PubMed ID: 1848635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholamban-dependent effects of C12E8 on calcium transport and molecular dynamics in cardiac sarcoplasmic reticulum.
    Shi Y; Karon BS; Kutchai H; Thomas DD
    Biochemistry; 1996 Oct; 35(41):13393-9. PubMed ID: 8873607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum].
    Pechatnikov VA; Pletnev VV
    Biofizika; 1984; 29(3):438-41. PubMed ID: 6087927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.