These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

26 related articles for article (PubMed ID: 6822280)

  • 1. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review.
    Mazurek M; Szczepanek D; Orzyłowska A; Rola R
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Study of the Efficacy and Safety of 5-Aminolevulinic Radiodynamic Therapy for Glioblastoma Fractionated Radiotherapy.
    Takahashi J; Nagasawa S; Doi M; Takahashi M; Narita Y; Yamamoto J; Ikemoto MJ; Iwahashi H
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetrating the Blood-Brain Barrier with New Peptide-Porphyrin Conjugates Having anti-HIV Activity.
    Mendonça DA; Bakker M; Cruz-Oliveira C; Neves V; Jiménez MA; Defaus S; Cavaco M; Veiga AS; Cadima-Couto I; Castanho MARB; Andreu D; Todorovski T
    Bioconjug Chem; 2021 Jun; 32(6):1067-1077. PubMed ID: 34033716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and Metabolic Mechanisms Underlying Selective 5-Aminolevulinic Acid-Induced Fluorescence in Gliomas.
    Traylor JI; Pernik MN; Sternisha AC; McBrayer SK; Abdullah KG
    Cancers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors.
    Belykh E; Shaffer KV; Lin C; Byvaltsev VA; Preul MC; Chen L
    Front Oncol; 2020; 10():739. PubMed ID: 32582530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas.
    Yamamoto J; Kakeda S; Yoneda T; Ogura SI; Shimajiri S; Tanaka T; Korogi Y; Nishizawa S
    Oncol Lett; 2017 Mar; 13(3):1269-1275. PubMed ID: 28454245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of ultra low fluence rate single and repetitive photodynamic therapy on glioma spheroids.
    Mathews MS; Angell-Petersen E; Sanchez R; Sun CH; Vo V; Hirschberg H; Madsen SJ
    Lasers Surg Med; 2009 Oct; 41(8):578-84. PubMed ID: 19731298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motexafin gadolinium enhances the efficacy of aminolevulinic acid mediated-photodynamic therapy in human glioma spheroids.
    Madsen SJ; Mathews MS; Angell-Petersen E; Sun CH; Vo V; Sanchez R; Hirschberg H
    J Neurooncol; 2009 Jan; 91(2):141-9. PubMed ID: 18777009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids.
    Madsen SJ; Sun CH; Tromberg BJ; Hirschberg H
    J Neurooncol; 2003 May; 62(3):243-50. PubMed ID: 12777075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications.
    Döring F; Walter J; Will J; Föcking M; Boll M; Amasheh S; Clauss W; Daniel H
    J Clin Invest; 1998 Jun; 101(12):2761-7. PubMed ID: 9637710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of a class of porphyrin-containing cells in the pars intermedia of the rat hypophysis.
    Terr LI; Weiner LP
    Cell Tissue Res; 1983; 232(2):257-64. PubMed ID: 6309395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of lead treatment on intracellular iron and copper concentrations in cultured astroglia.
    Tiffany-Castiglioni E; Zmudzki J; Wu JN; Bratton GR
    Metab Brain Dis; 1987 Mar; 2(1):61-79. PubMed ID: 3505335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro distribution of porphyrin metabolites from 10(-3) M delta-aminolevulinic acid in primary neural tissue cultures.
    Durkó I; Juhász A
    Neurochem Res; 1987 May; 12(5):465-8. PubMed ID: 3587504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Binding of delta-aminolevulinic acid by myelin proteins].
    Muzyka VI; Moks MA
    Biokhimiia; 1984 Oct; 49(10):1647-9. PubMed ID: 6518185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of effect of phenobarbitone treatment on metabolism and brain uptake of delta-aminolaevulinic acid in rats.
    Percy VA; Shanley BC
    Biochem Pharmacol; 1977 Apr; 26(8):802-3. PubMed ID: 856212
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of vanadium in green plants. IV. Influence on the formation of delta-aminolevulinic acid in Chlorella.
    Méisch HU; Bauer J
    Arch Microbiol; 1978 Apr; 117(1):49-52. PubMed ID: 28098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal tubular transport of delta-aminolevulinic acid in rat.
    Cheeks C; Wedeen RP
    Proc Soc Exp Biol Med; 1986 Apr; 181(4):596-601. PubMed ID: 3081910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An autoradiographic study of delta-aminolevulinic acid uptake by mouse brain.
    Terr L; Weiner LP
    Exp Neurol; 1983 Feb; 79(2):564-8. PubMed ID: 6822280
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.