These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6822477)

  • 1. Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas.
    Barton LL; LeGall J; Odom JM; Peck HD
    J Bacteriol; 1983 Feb; 153(2):867-71. PubMed ID: 6822477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans.
    Steenkamp DJ; Peck HD
    J Biol Chem; 1981 Jun; 256(11):5450-8. PubMed ID: 7016854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation coupled to oxidation of hydrogen with fumarate in extracts of the sulfate reducing bacterium, Desulfovibrio gigas.
    Barton LL; Le Gall J; Peck HD
    Biochem Biophys Res Commun; 1970 Nov; 41(4):1036-42. PubMed ID: 5477217
    [No Abstract]   [Full Text] [Related]  

  • 4. Oxidation of protoporphyrinogen in the obligate anaerobe Desulfovibrio gigas.
    Klemm DJ; Barton LL
    J Bacteriol; 1985 Oct; 164(1):316-20. PubMed ID: 4044523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrite and hydroxylamine reduction in higher plants. Fractionation, electron donor and substrate specificity of leaf enzymes, principally from vegetable marrow (Cucurbita pepo L.).
    Hucklesby DP; Hewitt EJ
    Biochem J; 1970 Oct; 119(4):615-27. PubMed ID: 4395427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of dehydrogenases, reductases, and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas.
    Odom JM; Peck HD
    J Bacteriol; 1981 Jul; 147(1):161-9. PubMed ID: 7240092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE REDUCTION OF NITRATE, NITRITE AND HYDROXYLAMINE TO AMMONIA BY ENZYMES FROM CUCURBITA PEPO L. IN THE PRESENCE OF REDUCED BENZYL VIOLOGEN AS ELECTRON DONOR.
    CRESSWELL CF; HAGEMAN RH; HEWITT EJ; HUCKLESBY DP
    Biochem J; 1965 Jan; 94(1):40-53. PubMed ID: 14342247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cytochrome c3 reactivation of hydroxylamine- and nitrite-reductase of sulfate-reducing bacteria].
    PICHINOTY F; SENEZ JC
    C R Seances Soc Biol Fil; 1956 Sep; 150(4):744-5. PubMed ID: 13365197
    [No Abstract]   [Full Text] [Related]  

  • 9. ATP and acetylene-reducing activity of a sulfate-reducing bacterium.
    Sekiguchi T; Noguchi A; Nosoh Y
    Can J Microbiol; 1977 May; 23(5):567-72. PubMed ID: 871967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transport-linked proton translocation at nitrite reduction in Campylobacter sputorum subspecies bubulus.
    de Vries W; Niekus HG; van Berchum H; Stouthamer AH
    Arch Microbiol; 1982 Mar; 131(2):132-9. PubMed ID: 6280634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of flavoredoxin, a new flavoprotein that permits in vitro reconstitution of an electron transfer chain from molecular hydrogen to sulfite reduction in the bacterium Desulfovibrio gigas.
    Chen L; Liu MY; LeGall J
    Arch Biochem Biophys; 1993 May; 303(1):44-50. PubMed ID: 8387752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio.
    Odom JM; Peck HD
    Annu Rev Microbiol; 1984; 38():551-92. PubMed ID: 6093686
    [No Abstract]   [Full Text] [Related]  

  • 13. Calcium is required for the reduction of sulfite from hydrogen in a reconstituted electron transfer chain from the sulfate reducing bacterium, Desulfovibrio gigas.
    Chen L; Liu MY; Le Gall J
    Biochem Biophys Res Commun; 1991 Oct; 180(1):238-42. PubMed ID: 1930220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources.
    Badziong W; Thauer RK
    Arch Microbiol; 1978 May; 117(2):209-14. PubMed ID: 28099
    [No Abstract]   [Full Text] [Related]  

  • 15. Electron transport phosphorylation coupled to fumarate reduction by H2- and Mg2+-dependent adenosine triphosphatase activity in extracts of the rumen anaerobe Vibrio succinogenes.
    Reddy CA; Peck HD
    J Bacteriol; 1978 Jun; 134(3):982-91. PubMed ID: 149114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Lithotrophic metabolic elements in the obligate methylotroph, Methylococcus thermophilus].
    Malashenko IuR; Sokolov IG; Romanovskaia VA; Shkurko IuB
    Mikrobiologiia; 1979; 48(4):592-8. PubMed ID: 225646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation by extracts of Nitrosomonas europaea.
    BURGE WD; MALAVOLTA E; DELWICHE CC
    J Bacteriol; 1963 Jan; 85(1):106-10. PubMed ID: 14016952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11.
    Esteve-Nuñez A; Lucchesi G; Philipp B; Schink B; Ramos JL
    J Bacteriol; 2000 Mar; 182(5):1352-5. PubMed ID: 10671458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton translocation coupled to nitrite reduction in anaerobically grown Escherichia coli.
    Sawada MT; Ishimoto M
    J Biochem; 1985 Jan; 97(1):205-11. PubMed ID: 2860102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bioenergetics of denitrification.
    Stouthamer AH; Boogerd FC; van Verseveld HW
    Antonie Van Leeuwenhoek; 1982; 48(6):545-53. PubMed ID: 6762847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.