These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 6824643)
1. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Anderson RF Biochim Biophys Acta; 1983 Jan; 722(1):158-62. PubMed ID: 6824643 [No Abstract] [Full Text] [Related]
2. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane. Jin C; Yao Y; Yonezawa A; Imai S; Yoshimatsu H; Otani Y; Omura T; Nakagawa S; Nakagawa T; Matsubara K Biol Pharm Bull; 2017; 40(11):1990-1995. PubMed ID: 29093349 [TBL] [Abstract][Full Text] [Related]
3. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains. Sevrioukova I; Truan G; Peterson JA Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532 [TBL] [Abstract][Full Text] [Related]
4. Preparation, characterization, and coenzymic properties of 5-carba-5-deaza and 1-carba-1-deaza analogs of riboflavin, FMN, and FAD. Hersh LB; Walsh C Methods Enzymol; 1980; 66():277-87. PubMed ID: 6246390 [No Abstract] [Full Text] [Related]
5. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation. Hustad S; McKinley MC; McNulty H; Schneede J; Strain JJ; Scott JM; Ueland PM Clin Chem; 2002 Sep; 48(9):1571-7. PubMed ID: 12194936 [TBL] [Abstract][Full Text] [Related]
6. Cofactors and pathogens: Flavin mononucleotide and flavin adenine dinucleotide (FAD) biosynthesis by the FAD synthase from Brucella ovis. Moreno A; Taleb V; Sebastián M; Anoz-Carbonell E; Martínez-Júlvez M; Medina M IUBMB Life; 2022 Jul; 74(7):655-671. PubMed ID: 34813144 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. Daniel H; Binninger E; Rehner G Int J Vitam Nutr Res; 1983; 53(1):109-14. PubMed ID: 6853053 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis of flavin adenine dinucleotide and flavin mononucleotide by rabbit blood. Okumura M; Yagi K J Nutr Sci Vitaminol (Tokyo); 1980; 26(3):231-6. PubMed ID: 7441382 [TBL] [Abstract][Full Text] [Related]
9. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. Akiyama T; Selhub J; Rosenberg IH J Nutr; 1982 Feb; 112(2):263-8. PubMed ID: 6120218 [TBL] [Abstract][Full Text] [Related]
10. The recognition of glycolate oxidase apoprotein with flavin analogs in higher plants. Wang WJ; Huang JQ; Yang C; Huang JJ; Li MQ Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):290-6. PubMed ID: 15253155 [TBL] [Abstract][Full Text] [Related]
11. Analysis of flavins in ocular tissues of the rabbit. Batey DW; Eckhert CD Invest Ophthalmol Vis Sci; 1991 Jun; 32(7):1981-5. PubMed ID: 2055692 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata. Fedorovych DV; Dmytruk KV; Sibirny AA Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426 [TBL] [Abstract][Full Text] [Related]
13. Differences in proton-coupled electron-transfer reactions of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) between buffered and unbuffered aqueous solutions. Tan SL; Kan JM; Webster RD J Phys Chem B; 2013 Nov; 117(44):13755-66. PubMed ID: 24079606 [TBL] [Abstract][Full Text] [Related]
14. THE FLAVIN COMPONENTS OF THE NADH DEHYDROGENASE OF THE RESPIRATORY CHAIN. KANIUGA Z; VEEGER C Biochim Biophys Acta; 1963 Oct; 77():339-42. PubMed ID: 14090453 [No Abstract] [Full Text] [Related]
15. Potentiation of the antiviral activity of poly r(A-U) by riboflavin, FAD and FMN. Jamison JM; Flowers DG; Kitareewan S; Krabill K; Tsai CC Cell Biol Int Rep; 1989 Feb; 13(2):215-22. PubMed ID: 2470520 [TBL] [Abstract][Full Text] [Related]
16. [Changes in the content of riboflavin and its coenzyme in tissues during the aging of rats]. Leclerc J; Miller ML Ann Nutr Metab; 1981; 25(1):20-6. PubMed ID: 7259107 [TBL] [Abstract][Full Text] [Related]
17. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection. Hühner J; Ingles-Prieto Á; Neusüß C; Lämmerhofer M; Janovjak H Electrophoresis; 2015 Feb; 36(4):518-25. PubMed ID: 25488801 [TBL] [Abstract][Full Text] [Related]
18. Multiple acyl-coenzyme A dehydrogenation disorder responsive to riboflavin: substrate oxidation, flavin metabolism, and flavoenzyme activities in fibroblasts. Rhead W; Roettger V; Marshall T; Amendt B Pediatr Res; 1993 Feb; 33(2):129-35. PubMed ID: 8433888 [TBL] [Abstract][Full Text] [Related]
19. Calorimetric studies of flavin-binding proteins: FMN and FAD binding to hen egg riboflavin-binding proteins. Nowak HP; Langerman N Arch Biochem Biophys; 1982 Mar; 214(1):231-8. PubMed ID: 7081998 [No Abstract] [Full Text] [Related]
20. Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide. Pinto J; Huang YP; Rivlin RS J Clin Invest; 1987 May; 79(5):1343-8. PubMed ID: 3033022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]