These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6824652)

  • 1. Kinetic mechanism of chlorpromazine inhibition of erythrocyte 3-O-methylglucose transport.
    Owen NE; Gunn RB
    Biochim Biophys Acta; 1983 Jan; 727(1):213-6. PubMed ID: 6824652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin.
    Sergeant S; Kim HD
    J Biol Chem; 1985 Nov; 260(27):14677-82. PubMed ID: 2997220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.
    Baker GF; Widdas WF
    J Physiol; 1988 Jan; 395():57-76. PubMed ID: 3411487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM
    J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated net efflux of 3-O-[14C]methylglucose in isolated fat cells.
    Vinten J
    Biochim Biophys Acta; 1984 May; 772(3):244-50. PubMed ID: 6722147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.
    Graff JC; Wohlhueter RM; Plagemann PG
    J Cell Physiol; 1978 Aug; 96(2):171-88. PubMed ID: 670303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monensin stimulates sugar transport in avian erythrocytes.
    Bihler I; Charles P; Sawh PC
    Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of hexose transport in avian erythrocytes by vinblastine and colchicine.
    Whitfield CF; Schworer ME
    Arch Biochem Biophys; 1978 Dec; 191(2):727-33. PubMed ID: 742897
    [No Abstract]   [Full Text] [Related]  

  • 12. Accelerated net efflux of 3-O-methylglucose from rat adipocytes: a reevaluation.
    Wheeler TJ
    Biochim Biophys Acta; 1994 Mar; 1190(2):345-54. PubMed ID: 8142435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ATP depletion on the mechanism of hexose transport in intact human erythrocytes.
    May JM
    FEBS Lett; 1988 Dec; 241(1-2):188-90. PubMed ID: 3143605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical application of measurement of glucose transport in human polymorphonuclear leukocytes.
    Okuno Y; Morii H
    Diabetes Res Clin Pract; 1989; 7 Suppl 1():S5-9. PubMed ID: 2806056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochalasin B inhibition and temperature dependence of 3-O-methylglucose transport in fat cells.
    Vinten J
    Biochim Biophys Acta; 1978 Aug; 511(2):259-73. PubMed ID: 678544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stimulating effect of 3',5'-(cyclic)adenosine monophosphate and lipolytic hormones on 3-O-methylglucose transport and 45Ca2+ release in adipocytes and skeletal muscle of the rat.
    Rasmussen MJ; Clausen T
    Biochim Biophys Acta; 1982 Dec; 693(2):389-97. PubMed ID: 6297557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of glucose and fructose in rat hepatocytes at 37 degrees C.
    Okuno Y; Gliemann J
    Biochim Biophys Acta; 1986 Nov; 862(2):329-34. PubMed ID: 3778895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The simple model of adipocyte hexose transport. Kinetic features, effect of insulin, and network thermodynamic computer simulations.
    May JM; Mikulecky DC
    J Biol Chem; 1982 Oct; 257(19):11601-8. PubMed ID: 6749843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of calcium in the regulation of sugar transport in the avian erythrocyte: effects of the calcium ionophore, A23187.
    Bihler I; Charles P; Sawh PC
    Cell Calcium; 1982 Aug; 3(3):243-62. PubMed ID: 6814760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.