These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6824970)

  • 1. Caudal neurosecretory system synaptic morphology following deafferentation: an electron microscopic degeneration study.
    O'Brien JP; Kriebel RM
    Brain Res Bull; 1983 Jan; 10(1):89-95. PubMed ID: 6824970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The caudal neurosecretory system of Poecilia sphenops (Poeciliidae).
    Kriebel RM
    J Morphol; 1980 Aug; 165(2):157-65. PubMed ID: 7452727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of serotonin in the caudal neurosecretory complex. A light and electron microscopic study.
    Cohen SL; Miller KE; Kriebel RM
    Anat Embryol (Berl); 1990; 181(5):491-8. PubMed ID: 2372134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The caudal neurosecretory system and its afferent synapses in the goldfish, Carassius auratus: morphology, immunohistochemistry, and fine structure.
    Cioni C; De Vito L; Greco A; Pepe A
    J Morphol; 1998 Jan; 235(1):59-76. PubMed ID: 9397580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The neurosecretory structures in the spinal cord of sturgeons].
    Saenko II
    Fiziol Zh SSSR Im I M Sechenova; 1991 Aug; 77(8):84-91. PubMed ID: 1668590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytology of brain stem neurons projecting to the caudal neurosecretory complex: an HRP-electron microscopic study.
    Miller KE; Kriebel RM
    Brain Res Bull; 1986 Feb; 16(2):183-8. PubMed ID: 3697787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projections to the inferior colliculus from the dorsal column nuclei. An experimental electron microscopic study in the cat.
    Paloff AM; Usunoff KG
    J Hirnforsch; 1992; 33(6):597-610. PubMed ID: 1283610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphologic features of the caudal neurosecretory system in the blueback herring, Pomolobus aestivalis.
    Kriebel RM; Burke JD; Meetz GD
    Anat Rec; 1979 Nov; 195(3):553-72. PubMed ID: 507409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphisms and general synaptology of sonic motor nucleus.
    Bass AH; Marchaterre MA
    J Comp Neurol; 1989 Aug; 286(2):154-69. PubMed ID: 2794113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptology of neurosecretory cells in the nucleus paraventricularis of the domestic fowl.
    Panzica GC; Viglietti-Panzica C; Contenti E
    Cell Tissue Res; 1982; 227(1):79-92. PubMed ID: 7172215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A light and electron microscopic study of the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus.
    Rutherford JG; Gwyn DG
    J Comp Neurol; 1980 Jan; 189(1):127-55. PubMed ID: 6766143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain stem innervation of the caudal neurosecretory system.
    O'Brien JP; Kriebel RM
    Cell Tissue Res; 1982; 227(1):153-60. PubMed ID: 7172207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terminal processes of serotonin neurons in the caudal spinal cord of the molly, Poecilia latipinna, project to the leptomeninges and urophysis.
    Cohen SL; Kriebel RM
    Cell Tissue Res; 1989 Mar; 255(3):619-25. PubMed ID: 2706662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fine structure of the intermediolateral nucleus of the spinal cord of the monkey (Macaca fascicularis).
    Wong WC; Tan CK
    J Anat; 1980 Mar; 130(Pt 2):263-77. PubMed ID: 6772621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural changes in the urophysis of Mollienesia sphenops following adaptation to seawater.
    Kriebel RM
    Cell Tissue Res; 1980; 207(1):135-42. PubMed ID: 7388907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylethanolamine N-methyltransferase-immunoreactive terminals synapse on adrenal preganglionic neurons in the rat spinal cord.
    Bernstein-Goral H; Bohn MC
    Neuroscience; 1989; 32(2):521-37. PubMed ID: 2586760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection of jaw-muscle spindle afferents to the caudal brainstem in rats demonstrated using intracellular biotinamide.
    Luo P; Wong R; Dessem D
    J Comp Neurol; 1995 Jul; 358(1):63-78. PubMed ID: 7560277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of dorsal root axons to laminae IV, V, and VI of the Macaque spinal cord: a quantitative electron microscopic study.
    Ralston HJ; Ralston DD
    J Comp Neurol; 1982 Dec; 212(4):435-48. PubMed ID: 6891705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunocytochemical and ultrastructural changes in the caudal neurosecretory system of a seawater fish Boops boops L. (teleostei:sparidae) in relation to the osmotic stress.
    Minniti F; Minniti G
    Eur J Morphol; 1995 Nov; 33(5):473-83. PubMed ID: 8907560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.