These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 6825710)
1. Investigation of the primary photochemistry of bacteriorhodopsin by low-temperature Fourier-transform infrared spectroscopy. Siebert F; Mäntele W Eur J Biochem; 1983 Feb; 130(3):565-73. PubMed ID: 6825710 [TBL] [Abstract][Full Text] [Related]
2. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle. Rothschild KJ; Roepe P; Lugtenburg J; Pardoen JA Biochemistry; 1984 Dec; 23(25):6103-9. PubMed ID: 6525348 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts. Bagley K; Dollinger G; Eisenstein L; Singh AK; Zimányi L Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4972-6. PubMed ID: 6956906 [TBL] [Abstract][Full Text] [Related]
4. Infrared evidence that the Schiff base of bacteriorhodopsin is protonated: bR570 and K intermediates. Rothschild KJ; Marrero H Proc Natl Acad Sci U S A; 1982 Jul; 79(13):4045-9. PubMed ID: 6955790 [TBL] [Abstract][Full Text] [Related]
5. Water structural changes in the bacteriorhodopsin photocycle: analysis by Fourier transform infrared spectroscopy. Maeda A; Sasaki J; Shichida Y; Yoshizawa T Biochemistry; 1992 Jan; 31(2):462-7. PubMed ID: 1731905 [TBL] [Abstract][Full Text] [Related]
6. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
7. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Siebert F; Mäntele W; Gerwert K Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543 [TBL] [Abstract][Full Text] [Related]
8. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891 [TBL] [Abstract][Full Text] [Related]
9. Primary photochemistry of bacteriorhodopsin: comparison of Fourier transform infrared difference spectra with resonance Raman spectra. Rothschild KJ; Marrero H; Braiman M; Mathies R Photochem Photobiol; 1984 Nov; 40(5):675-9. PubMed ID: 6514815 [No Abstract] [Full Text] [Related]
10. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy. Stockburger M; Klusmann W; Gattermann H; Massig G; Peters R Biochemistry; 1979 Oct; 18(22):4886-900. PubMed ID: 508721 [TBL] [Abstract][Full Text] [Related]
12. Fourier transform infrared spectroscopic evidence for the existence of two conformations of the bacteriorhodopsin primary photoproduct at low temperature. Rothschild KJ; Roepe P; Gillespie J Biochim Biophys Acta; 1985 Jun; 808(1):140-8. PubMed ID: 4005227 [TBL] [Abstract][Full Text] [Related]
13. Time-resolved resonance Raman characterization of the bO640 intermediate of bacteriorhodopsin. Reprotonation of the Schiff base. Terner J; Hsieh CL; Burns AR; El-Sayed MA Biochemistry; 1979 Aug; 18(16):3629-34. PubMed ID: 476072 [TBL] [Abstract][Full Text] [Related]
14. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy. Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175 [TBL] [Abstract][Full Text] [Related]
15. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
16. Fourier transform infrared study of the N intermediate of bacteriorhodopsin. Pfefferlé JM; Maeda A; Sasaki J; Yoshizawa T Biochemistry; 1991 Jul; 30(26):6548-56. PubMed ID: 2054353 [TBL] [Abstract][Full Text] [Related]
17. The Schiff base bond configuration in bacteriorhodopsin and in model compounds. Livnah N; Sheves M Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511 [TBL] [Abstract][Full Text] [Related]
18. Structure of the retinal chromophore in the hR578 form of halorhodopsin. Smith SO; Marvin MJ; Bogomolni RA; Mathies RA J Biol Chem; 1984 Oct; 259(20):12326-9. PubMed ID: 6490613 [TBL] [Abstract][Full Text] [Related]
19. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate. Maeda A; Gennis RB; Balashov SP; Ebrey TG Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885 [TBL] [Abstract][Full Text] [Related]