These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 6826599)

  • 1. Frictional torque in surface and conventional hip replacement.
    Ma SM; Kabo JM; Amstutz HC
    J Bone Joint Surg Am; 1983 Mar; 65(3):366-70. PubMed ID: 6826599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of frictional torque to loosening at the cement-bone interface in Tharies hip replacements.
    Mai MT; Schmalzried TP; Dorey FJ; Campbell PA; Amstutz HC
    J Bone Joint Surg Am; 1996 Apr; 78(4):505-11. PubMed ID: 8609129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symposium on Surface Replacement Arthroplasty of the Hip. Biomechanics: mutifactorial design choices--an essential compromise?
    Clarke IC
    Orthop Clin North Am; 1982 Oct; 13(4):681-707. PubMed ID: 7145341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of acetabular shell deformation and liner thickness on frictional torque in ultrahigh-molecular-weight polyethylene acetabular bearings.
    Schmidig G; Patel A; Liepins I; Thakore M; Markel DC
    J Arthroplasty; 2010 Jun; 25(4):644-53. PubMed ID: 19493649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conus hip prosthesis.
    Wagner H; Wagner M
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):213-21. PubMed ID: 11706545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Friction in modern total hip arthroplasty bearings: Effect of material, design, and test methodology.
    Scholl L; Longaray J; Raja L; Lee R; Faizan A; Herrera L; Thakore M; Nevelos J
    Proc Inst Mech Eng H; 2016 Jan; 230(1):50-7. PubMed ID: 26721426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The principle of low frictional torque in the Charnley total hip replacement.
    Wroblewski BM; Siney PD; Fleming PA
    J Bone Joint Surg Br; 2009 Jul; 91(7):855-8. PubMed ID: 19567846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement.
    Bartel DL; Bicknell VL; Wright TM
    J Bone Joint Surg Am; 1986 Sep; 68(7):1041-51. PubMed ID: 3745241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charnley total hip arthroplasty with use of improved techniques of cementing. The results after a minimum of fifteen years of follow-up.
    Madey SM; Callaghan JJ; Olejniczak JP; Goetz DD; Johnston RC
    J Bone Joint Surg Am; 1997 Jan; 79(1):53-64. PubMed ID: 9010186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a ten-station, multi-axis hip joint simulator.
    Goldsmith AA; Dowson D
    Proc Inst Mech Eng H; 1999; 213(4):311-6. PubMed ID: 10466362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential thermal artifacts in hip joint wear simulators.
    Lu Z; McKellop H; Liao P; Benya P
    J Biomed Mater Res; 1999; 48(4):458-64. PubMed ID: 10421687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of frictional torque and torsional resistance of aged conventional gamma-in-nitrogen sterilized polyethylene versus aged highly crosslinked polyethylene articulating against head sizes larger than 32 mm.
    Burroughs BR; Muratoglu OK; Bragdon CR; Wannomae KK; Christensen S; Lozynsky AJ; Harris WH
    Acta Orthop; 2006 Oct; 77(5):710-8. PubMed ID: 17068700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hip wear simulator for the evaluation of biomaterials in hip arthroplasty components.
    Mejia LC; Brierley TJ
    Biomed Mater Eng; 1994; 4(4):259-71. PubMed ID: 7950874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral simultaneous metal inlay dissociation from the polyethylene liner of a metal-on-metal hip replacement.
    Girard J; Soenen M; Monnin C; Migaud H
    Orthop Traumatol Surg Res; 2009 Oct; 95(6):443-6. PubMed ID: 19740716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of friction and loosening in hip endoprostheses].
    Dovzak Bajs I; Cvjetko I; Car D; Kokić V
    Acta Med Croatica; 2002; 56(4-5):151-5. PubMed ID: 12768893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term results of rotational total hip arthroplasty: radiological analysis.
    Akasaki K
    J Orthop Sci; 2004; 9(2):126-34. PubMed ID: 15045540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigations of the insertion and deformation behavior of press-fit and threaded acetabular cups for total hip replacement.
    Fritsche A; Bialek K; Mittelmeier W; Simnacher M; Fethke K; Wree A; Bader R
    J Orthop Sci; 2008 May; 13(3):240-7. PubMed ID: 18528658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission.
    Sugiyama H; Whiteside LA; Kaiser AD
    Clin Orthop Relat Res; 1989 Dec; (249):122-8. PubMed ID: 2582663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters.
    Digas G
    Acta Orthop Suppl; 2005 Feb; 76(315):3-82. PubMed ID: 15790289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel analytical approach for determining the frictional moments and torques acting on modular femoral components in total hip replacements.
    Farhoudi H; Oskouei RH; Jones CF; Taylor M
    J Biomech; 2015 Apr; 48(6):976-83. PubMed ID: 25721768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.