These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 6826785)

  • 1. Development of retinal amacrine cells in the mouse embryo: evidence for two modes of formation.
    Hinds JW; Hinds PL
    J Comp Neurol; 1983 Jan; 213(1):1-23. PubMed ID: 6826785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuitry and role of substance P-immunoreactive neurons in the primate retina.
    Cuenca N; Kolb H
    J Comp Neurol; 1998 Apr; 393(4):439-56. PubMed ID: 9550150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early differentiation of ganglion, amacrine, bipolar, and Muller cells in the developing fovea of human retina.
    van Driel D; Provis JM; Billson FA
    J Comp Neurol; 1990 Jan; 291(2):203-19. PubMed ID: 2298931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells. Light and electron microscopic studies with a functional interpretation.
    Famiglietti EV
    J Comp Neurol; 1992 Feb; 316(4):422-46. PubMed ID: 1374438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axon-bearing amacrine cells of the macaque monkey retina.
    Dacey DM
    J Comp Neurol; 1989 Jun; 284(2):275-93. PubMed ID: 2754037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of cell death in the topogenesis of neuronal distributions in the developing cat retinal ganglion cell layer.
    Wong RO; Hughes A
    J Comp Neurol; 1987 Aug; 262(4):496-511. PubMed ID: 3667961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic amacrine cells in rat retina: immunocytochemical identification and synaptic connectivity.
    Vaughn JE; Famiglietti EV; Barber RP; Saito K; Roberts E; Ribak CE
    J Comp Neurol; 1981 Mar; 197(1):113-27. PubMed ID: 7014659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis.
    Hinds JW; Hinds PL
    J Comp Neurol; 1979 Oct; 187(3):495-511. PubMed ID: 489789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular degeneration and synaptogenesis in the developing retina of the rat.
    Horsburgh GM; Sefton AJ
    J Comp Neurol; 1987 Sep; 263(4):553-66. PubMed ID: 3667988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organization of the inner plexiform layer of the turtle retina: an electron microscopic study.
    Guiloff GD; Jones J; Kolb H
    J Comp Neurol; 1988 Jun; 272(2):280-92. PubMed ID: 3397409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic retinal neurogenesis in the brush-tailed possum, Trichosurus vulpecula: further evidence for the mechanisms involved in formation of ganglion cell density gradients.
    Harman AM; Sanderson KJ; Beazley LD
    J Comp Neurol; 1992 Nov; 325(4):595-606. PubMed ID: 1469115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus.
    Ito H; Murakami T
    J Comp Neurol; 1984 Oct; 229(1):80-96. PubMed ID: 6490977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Displaced amacrine cells in the ganglion cell layer of the ground squirrel retina.
    Abreu M; Kicliter E; Lugo-Garcia N
    P R Health Sci J; 1993 Jun; 12(2):137-41. PubMed ID: 8210285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina.
    Wong RO; Hughes A
    J Comp Neurol; 1987 Jan; 255(2):159-77. PubMed ID: 3819013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains.
    Kolb H; Nelson R
    J Comp Neurol; 1993 Mar; 329(1):85-110. PubMed ID: 8454727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina.
    Famiglietti EV
    Vis Neurosci; 2008; 25(1):53-66. PubMed ID: 18282310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of vesicle associated membrane protein isoforms in the mouse retina.
    Sherry DM; Wang MM; Frishman LJ
    Mol Vis; 2003 Dec; 9():673-88. PubMed ID: 14685145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal gradients of differentiation of chick retina types I and II cholinergic cells: identification of a common postmitotic cell population.
    Prada F; Medina JI; López-Gallardo M; López R; Quesada A; Spira A; Prada C
    J Comp Neurol; 1999 Aug; 410(3):457-66. PubMed ID: 10404412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurogenesis and cell death in the ganglion cell layer of vertebrate retina.
    Farah MH
    Brain Res Rev; 2006 Sep; 52(2):264-74. PubMed ID: 16764935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone bipolar cells as interneurons in the rod pathway of the rabbit retina.
    Strettoi E; Dacheux RF; Raviola E
    J Comp Neurol; 1994 Sep; 347(1):139-49. PubMed ID: 7798378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.