These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
4. Frequency of occurrence of various nuclear reactions when fast neutrons (approximately less than 50 MeV) pass through tissue-equivalent material. Alsmiller RG; Barish J Med Phys; 1976; 3(6):418-21. PubMed ID: 826777 [TBL] [Abstract][Full Text] [Related]
5. Fast neutrons from a 25-MeV betatron. Fox JG; McAllister JD Med Phys; 1977; 4(5):387-96. PubMed ID: 409919 [TBL] [Abstract][Full Text] [Related]
6. Relative measurements of fast neutron contamination in 18-MV photon beams from two linear accelerators and a betatron. Gur D; Bukovitz G; Rosen JC; Holmes BG Med Phys; 1979; 6(2):140-1. PubMed ID: 460063 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the fast-neutron sensitivity of a Geiger-Müller counter using different techniques. Mijnheer BJ; Guldbakke S; Lewis VE; Broerse JJ Phys Med Biol; 1982 Jan; 27(1):91-6. PubMed ID: 6965162 [TBL] [Abstract][Full Text] [Related]
8. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements. Borak TB; Stinchcomb TG Phys Med Biol; 1979 Jan; 24(1):18-36. PubMed ID: 432267 [TBL] [Abstract][Full Text] [Related]
9. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium. Fidorra J; Booz J Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509 [TBL] [Abstract][Full Text] [Related]
10. Dose levels due to neutrons in the vicinity of high-energy medical accelerators. McGinley PH; Wood M; Mills M; Rodriguez R Med Phys; 1976; 3(6):397-402. PubMed ID: 826776 [TBL] [Abstract][Full Text] [Related]
11. In-phantom dosimetry and spectrometry of photoneutrons from an 18 MV linear accelerator. d'Errico F; Nath R; Tana L; Curzio G; Alberts WG Med Phys; 1998 Sep; 25(9):1717-24. PubMed ID: 9775378 [TBL] [Abstract][Full Text] [Related]
12. [Neutron pollution in roentgen beams from electron accelerators]. Fehrentz D; Hassib GM; Spyropoulos B Strahlentherapie; 1983 Nov; 159(11):703-12. PubMed ID: 6658859 [TBL] [Abstract][Full Text] [Related]
13. Photoneutron fields in medical accelerator rooms with primary barriers constructed of concrete and metals. McGinley PH Health Phys; 1992 Dec; 63(6):698-701. PubMed ID: 1428893 [TBL] [Abstract][Full Text] [Related]
14. The relative neutron sensitivities of plastic liners in ionisation chambers. Tymons BJ; Cooper PN; Hunt SE Health Phys; 1974 Mar; 26(3):263-6. PubMed ID: 4426762 [No Abstract] [Full Text] [Related]
15. Fast and thermal neutron profiles for a 25-MV x-ray beam. Price KW; Nath R; Holeman GR Med Phys; 1978; 5(4):285-9. PubMed ID: 98695 [TBL] [Abstract][Full Text] [Related]
16. Neutron spectra from deuteron and proton bombardment of thick lithium targets: potential for neutron therapy. Nelson CE; Purser FO; Behren PV; Newson HW Phys Med Biol; 1978 Jan; 23(1):39-46. PubMed ID: 416447 [TBL] [Abstract][Full Text] [Related]
17. Dose to radiotherapy technologists from activation of patients at a fast neutron therapy facility. Tatcher M; Rosenberg I; Couch JG Health Phys; 1987 Sep; 53(3):311-2. PubMed ID: 3114173 [No Abstract] [Full Text] [Related]