These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6827912)

  • 41. The inhibition of GLUT1 glucose transport and cytochalasin B binding activity by tricyclic antidepressants.
    Pinkofsky HB; Dwyer DS; Bradley RJ
    Life Sci; 2000; 66(3):271-8. PubMed ID: 10666003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of tricyclic drug analogs with synaptic plasma membranes: structure-mechanism relationships in inhibition of neuronal Na+/K(+)-ATPase activity.
    Carfagna MA; Muhoberac BB
    Mol Pharmacol; 1993 Jul; 44(1):129-41. PubMed ID: 8393517
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regioselectivity and stereoselectivity of the metabolism of the chiral quinolizidine alkaloids sparteine and pachycarpine in the rat.
    Ebner T; Meese CO; Eichelbaum M
    Xenobiotica; 1991 Jul; 21(7):847-57. PubMed ID: 1776260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pharmacokinetics of midazolam in relation to polymorphic sparteine oxidation.
    Klotz U; Mikus G; Zekorn C; Eichelbaum M
    Br J Clin Pharmacol; 1986 Nov; 22(5):618-20. PubMed ID: 3790411
    [No Abstract]   [Full Text] [Related]  

  • 45. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms--a population study.
    Madsen H; Nielsen KK; Brøsen K
    Br J Clin Pharmacol; 1995 Apr; 39(4):433-9. PubMed ID: 7640151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [A susceptible factor to acquire parkinsonism: sparteine oxidation polymorphism].
    Chiba K
    Rinsho Shinkeigaku; 1989 Dec; 29(12):1507-9. PubMed ID: 2630146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of microsomal cytochromes P450 in rat liver by the tricyclic antidepressant drug desipramine and its primary oxidized metabolites.
    McNeil CM; Murray M
    Biochem Pharmacol; 1996 Jan; 51(1):15-20. PubMed ID: 8534263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Promazine pharmacokinetics during concurrent treatment with tricyclic antidepressants.
    Syrek M; Wójcikowski J; Daniel WA
    Pol J Pharmacol; 1997; 49(6):453-62. PubMed ID: 9566049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IFN-gamma reduction by tricyclic antidepressants.
    Himmerich H; Fulda S; Sheldrick AJ; Plümäkers B; Rink L
    Int J Psychiatry Med; 2010; 40(4):413-24. PubMed ID: 21391412
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity.
    Potter WZ; Calil HM; Manian AA; Zavadil AP; Goodwin FK
    Biol Psychiatry; 1979 Aug; 14(4):601-13. PubMed ID: 486616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasma concentrations of tricyclic antidepressants in clinical practice.
    Hollister LE
    J Clin Psychiatry; 1982 Feb; 43(2):66-9. PubMed ID: 7056706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and modulation by drugs of sheep liver microsomal flavin monooxygenase activity.
    Can Demirdöğen B; Adali O
    Cell Biochem Funct; 2005; 23(4):245-51. PubMed ID: 15473006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple dried blood spot method for therapeutic drug monitoring of the tricyclic antidepressants amitriptyline, nortriptyline, imipramine, clomipramine, and their active metabolites using LC-MS/MS.
    Berm EJJ; Paardekooper J; Brummel-Mulder E; Hak E; Wilffert B; Maring JG
    Talanta; 2015 Mar; 134():165-172. PubMed ID: 25618654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Severe nortriptyline poisoning in poor metabolizers of the sparteine type].
    Petersen P; Brøsen K
    Ugeskr Laeger; 1991 Feb; 153(6):443-4. PubMed ID: 2000655
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of tricyclic antidepressants with a synaptic ion channel.
    Aronstam RS
    Life Sci; 1981 Jan; 28(1):59-64. PubMed ID: 6261057
    [No Abstract]   [Full Text] [Related]  

  • 56. Correlations among the metabolic ratios of three test probes (metoprolol, debrisoquine and sparteine) for genetically determined oxidation polymorphism in a Japanese population.
    Horai Y; Taga J; Ishizaki T; Ishikawa K
    Br J Clin Pharmacol; 1990 Jan; 29(1):111-5. PubMed ID: 2297455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship between surface activity and toxicity to Chang liver cultures of tricyclic antidepressants.
    Yasuhara H; Dujovne CA; Ueda I
    Pharmacology; 1979; 18(2):95-102. PubMed ID: 424443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect.
    Eichelbaum M; Spannbrucker N; Steincke B; Dengler HJ
    Eur J Clin Pharmacol; 1979 Sep; 16(3):183-7. PubMed ID: 499318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms.
    Nielsen KK; Brøsen K; Hansen MG; Gram LF
    Clin Pharmacol Ther; 1994 May; 55(5):518-27. PubMed ID: 8181196
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tricyclic antidepressants and histamine H1 receptors.
    Richelson E
    Mayo Clin Proc; 1979 Oct; 54(10):669-74. PubMed ID: 39202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.