BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 6828871)

  • 1. Overproduction and elimination of retinal axons in the fetal rhesus monkey.
    Rakic P; Riley KP
    Science; 1983 Mar; 219(4591):1441-4. PubMed ID: 6828871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prenatal development of retinogeniculate axons in the macaque monkey during segregation of binocular inputs.
    Snider CJ; Dehay C; Berland M; Kennedy H; Chalupa LM
    J Neurosci; 1999 Jan; 19(1):220-8. PubMed ID: 9870952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of axon number in primate optic nerve by prenatal binocular competition.
    Rakic P; Riley KP
    Nature; 1983 Sep 8-14; 305(5930):135-7. PubMed ID: 6888556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey.
    LaMantia AS; Rakic P
    J Neurosci; 1990 Jul; 10(7):2156-75. PubMed ID: 2376772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of pioneer retinal axons within the optic tract of the rhesus monkey.
    Meissirel C; Chalupa LM
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3906-10. PubMed ID: 8171011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course.
    Colello RJ; Guillery RW
    Development; 1990 Mar; 108(3):515-23. PubMed ID: 2340812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of binocular responses and reduced retinal convergence during the period of retinogeniculate axon segregation.
    Ziburkus J; Guido W
    J Neurophysiol; 2006 Nov; 96(5):2775-84. PubMed ID: 16899631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of axons in the cat optic nerve following fetal unilateral enucleation: an electron microscopic analysis.
    Williams RW; Bastiani MJ; Chalupa LM
    J Neurosci; 1983 Jan; 3(1):133-44. PubMed ID: 6822851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human fetal optic nerve: overproduction and elimination of retinal axons during development.
    Provis JM; van Driel D; Billson FA; Russell P
    J Comp Neurol; 1985 Aug; 238(1):92-100. PubMed ID: 4044906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nasotemporal division of retinal ganglion cells with crossed and uncrossed projections in the fetal rhesus monkey.
    Chalupa LM; Lia B
    J Neurosci; 1991 Jan; 11(1):191-202. PubMed ID: 1702463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased retinal ganglion cell number and misdirected axon growth associated with fissure defects in Bst/+ mutant mice.
    Rice DS; Tang Q; Williams RW; Harris BS; Davisson MT; Goldowitz D
    Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):2112-24. PubMed ID: 9331275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the numbers of retinal ganglion cells and optic nerve axons in the developing albino rabbit.
    Robinson SR; Horsburgh GM; Dreher B; McCall MJ
    Brain Res; 1987 Oct; 432(2):161-74. PubMed ID: 3676835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey.
    LaMantia AS; Rakic P
    J Comp Neurol; 1994 Feb; 340(3):328-36. PubMed ID: 8188854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of retinal ganglion cell projections in the embryonic rhesus monkey.
    Chalupa LM; Meissirel C; Lia B
    Perspect Dev Neurobiol; 1996; 3(3):223-31. PubMed ID: 8931096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prenatal development of individual retinogeniculate axons during the period of segregation.
    Sretavan D; Shatz CJ
    Nature; 1984 Apr 26-May 2; 308(5962):845-8. PubMed ID: 6201743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural analysis of the visual system in the rhesus monkey model of optic nerve head ischemia.
    Brooks DE; Källberg ME; Cannon RL; Komàromy AM; Ollivier FJ; Malakhova OE; Dawson WW; Sherwood MB; Kuekuerichkina EE; Lambrou GN
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1830-40. PubMed ID: 15161847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular competition does not regulate retinogeniculate arbor size in fetal monkey.
    Wefers CJ; Dehay C; Berland M; Kennedy H; Chalupa LM
    J Comp Neurol; 2000 Nov; 427(3):362-9. PubMed ID: 11054699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a transient retino-retinal pathway in hooded and albino rats.
    Bunt SM; Lund RD
    Brain Res; 1981 May; 211(2):399-404. PubMed ID: 6165434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oriented extracellular channels and axonal guidance in the embryonic chick retina.
    Krayanek S; Goldberg S
    Dev Biol; 1981 May; 84(1):41-50. PubMed ID: 7250501
    [No Abstract]   [Full Text] [Related]  

  • 20. Early uncrossed component of the developing optic nerve with a short extracerebral course: a light and electron microscopic study of fetal ferrets.
    Guillery RW; Walsh C
    J Comp Neurol; 1987 Nov; 265(2):218-23. PubMed ID: 3693607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.