BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 6829080)

  • 1. [Membrane potential during Ca++ transport and AMP deamination in vesicles of the sarcoplasmic reticulum].
    Tugaĭ VA; Voinitskiĭ VM; Kurskiĭ MD; Kucherenko NE; Usatiuk PV
    Ukr Biokhim Zh (1978); 1983; 55(1):58-63. PubMed ID: 6829080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Efflux of Ca2+ from fragmented sarcoplasmic reticulum during AMP deamination].
    Kurskiĭ MD; Nechiporenko EIu; Tugaĭ VA; Piskarev VB
    Biokhimiia; 1979 Oct; 44(10):1877-83. PubMed ID: 508858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Interaction of fluorescent probes with membranes of sarcoplasmic reticulum in AMP deamination].
    Tugĭ VA; Kurskiĭ MD; Usatiuk PV
    Ukr Biokhim Zh (1978); 1982; 54(1):61-5. PubMed ID: 7058553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in the intensity of the fluorescence of potential-sensitive fluorescent probes in the active transport of Ca2+ in the fragmented sarcoplasmic reticulum].
    Usatiuk PV; Tugaĭ VA
    Biofizika; 1985; 30(3):450-4. PubMed ID: 4027274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Ca 2+ outflow from sarcoplasmic reticulum vesicles during changes in membrane potential, Ca2+ concentration and pH].
    Tugaĭ VA; Diadiusha GP; Zakharchenko AN
    Ukr Biokhim Zh (1978); 1990; 62(1):70-5. PubMed ID: 2336728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of the external electric field on Ca2+ transport in the sarcoplasmic reticulum].
    Pechatnikov VA; Pletnev VV
    Biofizika; 1984; 29(3):438-41. PubMed ID: 6087927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transmembrane potential formation upon ATP hydrolysis in sarcoplasmic reticulum].
    Pechatnikov VA; Ivkova MN; Rizvanov FF; Pletnev VV
    Biofizika; 1979; 24(3):476-83. PubMed ID: 157168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence probe study of the lumenal Ca2+ of the sarcoplasmic reticulum vesicles during Ca2+ uptake and Ca2+ release.
    Saiki Y; Ikemoto N
    Biochem Biophys Res Commun; 1997 Dec; 241(1):181-6. PubMed ID: 9405254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The mechanism of thermo-induced functional uncoupling of the Ca-pump in the sarcoplasmic reticulum of skeletal muscles].
    Boldyrev AA; Quinn PJ; Lushchak VI
    Biokhimiia; 1986 Jan; 51(1):150-9. PubMed ID: 2937458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RyR1/SERCA1 cross-talk regulation of calcium transport in heavy sarcoplasmic reticulum vesicles.
    Gilchrist JS; Palahniuk C; Abrenica B; Rampersad P; Mutawe M; Cook T
    Can J Physiol Pharmacol; 2003 Mar; 81(3):220-33. PubMed ID: 12733821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence changes of the potential-sensitive merocyanine 540 during Ca transport in sarcoplasmic reticulum.
    Haeyaert P; Verdonck F; Wuytack F
    Arch Int Pharmacodyn Ther; 1980 Apr; 244(2):333-5. PubMed ID: 7406591
    [No Abstract]   [Full Text] [Related]  

  • 12. [The role of Ca2+-ATpase and its hydrophobic component in the release of Ca2+ from skeletal muscle sarcoplasmic reticulum].
    Voĭtsitskiĭ VM; Fedorov AN; Kurskiĭ MD; Kucherenko NE; Tugaĭ VA
    Biokhimiia; 1988 Sep; 53(9):1427-32. PubMed ID: 2974308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Low temperature effects on sarcoplasmic reticulum membrane permeability for Ca2+].
    Zhegunov GF; Belous AM
    Ukr Biokhim Zh (1978); 1978; 50(5):600-3. PubMed ID: 153027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of Ca2+ uptake by cyclic AMP and protein kinase in sarcoplasmic reticulum-rich and sarcolemma-rich microsomal fractions from rabbit heart.
    Will H; Schirpke B; Wollenberger A
    Acta Biol Med Ger; 1976; 35(5):529-41. PubMed ID: 185862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on calcium transport by sarcoplasmic reticulum vesicles using fluorescence probes.
    Ueno T; Sekine T
    J Biochem; 1978 Oct; 84(4):787-94. PubMed ID: 711700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscles after treatment with caffeine].
    Men'shikova EV; Ritov VB
    Biokhimiia; 1986 Apr; 51(4):603-11. PubMed ID: 2423142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inositol polyphosphates regulate Ca2+ efflux in a cardiac membrane subtype distinct from junctional sarcoplasmic reticulum.
    Quist EE; Quist CW; Vasan R
    Arch Biochem Biophys; 2000 Dec; 384(1):181-9. PubMed ID: 11147829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of power frequency magnetic field on Ca2+ transport of skeletal muscle sarcoplasmic reticulum vesicles].
    Liu RC; Zhou ZJ; Chu KP; Liu XL; Chen SD; Xia RH
    Zhonghua Yu Fang Yi Xue Za Zhi; 2006 May; 40(3):168-72. PubMed ID: 16836880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes in intravesicular pH during Ca2+ transport in the sarcoplasmic reticulum].
    Kurskiĭ MD; Tugaĭ VA; Usatiuk PV
    Ukr Biokhim Zh (1978); 1986; 58(1):56-62. PubMed ID: 3946018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.