These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 6830236)

  • 1. Reconstitution of calcium transporters from Azotobacter vinelandii membranes.
    Zimniak P; Barnes EM
    Arch Biochem Biophys; 1983 Jan; 220(1):247-52. PubMed ID: 6830236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a calcium/proton antiporter and an electrogenic calcium transporter in membrane vesicles from Azotobacter vinelandii.
    Zimniak P; Barnes EM
    J Biol Chem; 1980 Nov; 255(21):10140-3. PubMed ID: 6159352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton-coupled calcium transport by intact cells of Azotobacter vinelandii.
    Barnes EM
    J Bacteriol; 1980 Aug; 143(2):1086-9. PubMed ID: 6162836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of the sodium-calcium exchanger from cardiac sarcolemmal vesicles.
    Luciani S
    Biochim Biophys Acta; 1984 May; 772(2):127-34. PubMed ID: 6326821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilization and reconstitution of membranes containing the Na+ -Ca2+ exchange carrier from rat brain.
    Schellenberg GD; Swanson PD
    Biochim Biophys Acta; 1982 Aug; 690(1):133-44. PubMed ID: 6812630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glutamine in regulation of ammonium transport in Azotobacter vinelandii.
    Jayakumar A; Barnes EM
    Arch Biochem Biophys; 1984 May; 231(1):95-101. PubMed ID: 6721503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity chromatography purification of mitochondrial inner membrane proteins with calcium transport activity.
    Villa A; García-Simón MI; Blanco P; Sesé B; Bogónez E; Satrustegui J
    Biochim Biophys Acta; 1998 Sep; 1373(2):347-59. PubMed ID: 9733995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a Ca2+ uniporter from Bacillus subtilis by partial purification and reconstitution into phospholipid vesicles.
    Kusaka I; Matsushita T
    J Gen Microbiol; 1987 May; 133(5):1337-42. PubMed ID: 3116171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of glucose transport activity from erythrocyte membranes without detergent and its use in studying effects of ATP depletion.
    Wheeler TJ
    Biochim Biophys Acta; 1986 Jul; 859(2):180-8. PubMed ID: 3730375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochemistry of cytochrome oxidase in the cytoplasmic and intracytoplasmic membranes of Azotobacter vinelandii.
    Payne HR; Socolofsky MD
    J Bacteriol; 1984 Sep; 159(3):946-50. PubMed ID: 6207167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sodium-calcium exchanger of bovine rod photoreceptors: K(+)-dependence of the purified and reconstituted protein.
    Friedel U; Wolbring G; Wohlfart P; Cook NJ
    Biochim Biophys Acta; 1991 Jan; 1061(2):247-52. PubMed ID: 1998696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles.
    Vemuri R; Philipson KD
    Biochim Biophys Acta; 1988 Jan; 937(2):258-68. PubMed ID: 3276350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+-Ca2+ exchanger) from brain synaptic plasma membranes.
    Barzilai A; Spanier R; Rahamimoff H
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6521-5. PubMed ID: 6593714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of pH and potential gradients by the reconstituted Azotobacter vinelandii cytochrome bd respiratory protection oxidase.
    Kolonay JF; Maier RJ
    J Bacteriol; 1997 Jun; 179(11):3813-7. PubMed ID: 9171438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional characteristics of reconstituted sarcoplasmic reticulum membranes as a function of the lipid-to-protein ratio.
    Herbette L; Scarpa A; Blasie JK; Bauer DR; Wang CT; Fleischer S
    Biophys J; 1981 Oct; 36(1):27-46. PubMed ID: 6456781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Na(+)-independent Ca2+ efflux system in mitochondria is a Ca2+/2H+ exchange system.
    Rottenberg H; Marbach M
    FEBS Lett; 1990 Nov; 274(1-2):65-8. PubMed ID: 2253785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubilization and Reconstitution of the Mg2+/2H+ Antiporter of the Lutoid Tonoplast from Hevea brasiliensis Latex.
    Amalou Z; Gibrat R; Trouslot P; D'Auzac J
    Plant Physiol; 1994 Sep; 106(1):79-85. PubMed ID: 12232305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium transport in membrane vesicles of Streptococcus cremoris.
    Driessen AJ; Konings WN
    Eur J Biochem; 1986 Aug; 159(1):149-55. PubMed ID: 3017712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of Ca2+/H+ antiporter from Bacillus subtilis.
    Matsushita T; Ueda T; Kusaka I
    Eur J Biochem; 1986 Apr; 156(1):95-100. PubMed ID: 3082635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.