BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 6830240)

  • 1. Isolation of iron-containing superoxide dismutase from Bacteroides fragilis: reconstitution as a Mn-containing enzyme.
    Gregory EM; Dapper CH
    Arch Biochem Biophys; 1983 Jan; 220(1):293-300. PubMed ID: 6830240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an iron- and manganese-containing superoxide dismutase from Methylobacillus sp. strain SK1 DSM 8269.
    Seo SN; Lee JH; Kim YM
    Mol Cells; 2007 Jun; 23(3):370-8. PubMed ID: 17646712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ancestral Fe/Mn superoxide dismutases indicates their cambialistic origin.
    Valenti R; Jabłońska J; Tawfik DS
    Protein Sci; 2022 Oct; 31(10):e4423. PubMed ID: 36173172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary path to altered cofactor specificity in a metalloenzyme.
    Barwinska-Sendra A; Garcia YM; Sendra KM; Baslé A; Mackenzie ES; Tarrant E; Card P; Tabares LC; Bicep C; Un S; Kehl-Fie TE; Waldron KJ
    Nat Commun; 2020 Jun; 11(1):2738. PubMed ID: 32483131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling.
    Case AJ
    Antioxidants (Basel); 2017 Oct; 6(4):. PubMed ID: 29084153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single Outer-Sphere Mutation Stabilizes apo-Mn Superoxide Dismutase by 35 °C and Disfavors Mn Binding.
    Miller AF; Wang T
    Biochemistry; 2017 Jul; 56(29):3787-3799. PubMed ID: 28704037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity.
    Garcia YM; Barwinska-Sendra A; Tarrant E; Skaar EP; Waldron KJ; Kehl-Fie TE
    PLoS Pathog; 2017 Jan; 13(1):e1006125. PubMed ID: 28103306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide dismutases and superoxide reductases.
    Sheng Y; Abreu IA; Cabelli DE; Maroney MJ; Miller AF; Teixeira M; Valentine JS
    Chem Rev; 2014 Apr; 114(7):3854-918. PubMed ID: 24684599
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel P(1B)-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria.
    Padilla-Benavides T; Long JE; Raimunda D; Sassetti CM; Argüello JM
    J Biol Chem; 2013 Apr; 288(16):11334-47. PubMed ID: 23482562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida.
    Pedersen HL; Willassen NP; Leiros I
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2009 Feb; 65(Pt 2):84-92. PubMed ID: 19193992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical properties and regulated gene expression of the superoxide dismutase from the facultatively aerobic hyperthermophile Pyrobaculum calidifontis.
    Amo T; Atomi H; Imanaka T
    J Bacteriol; 2003 Nov; 185(21):6340-7. PubMed ID: 14563869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of an atypical superoxide dismutase from Sinorhizobium meliloti.
    Santos R; Bocquet S; Puppo A; Touati D
    J Bacteriol; 1999 Aug; 181(15):4509-16. PubMed ID: 10419947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of superoxide dismutase in Streptococcus thermophilus.
    Chang SK; Hassan HM
    Appl Environ Microbiol; 1997 Sep; 63(9):3732-5. PubMed ID: 9293026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide.
    Rocha ER; Selby T; Coleman JP; Smith CJ
    J Bacteriol; 1996 Dec; 178(23):6895-903. PubMed ID: 8955312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis.
    Rocha ER; Smith CJ
    J Bacteriol; 1995 Jun; 177(11):3111-9. PubMed ID: 7768808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen toxicity in Streptococcus mutans: manganese, iron, and superoxide dismutase.
    Martin ME; Strachan RC; Aranha H; Evans SL; Salin ML; Welch B; Arceneaux JE; Byers BR
    J Bacteriol; 1984 Aug; 159(2):745-9. PubMed ID: 6746577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron superoxide dismutase from Escherichia coli at 3.1-A resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels.
    Stallings WC; Powers TB; Pattridge KA; Fee JA; Ludwig ML
    Proc Natl Acad Sci U S A; 1983 Jul; 80(13):3884-8. PubMed ID: 6346322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations.
    Johnson EA; Levine RL; Lin EC
    J Bacteriol; 1985 Oct; 164(1):479-83. PubMed ID: 3900046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron.
    Pennington CD; Gregory EM
    J Bacteriol; 1986 May; 166(2):528-32. PubMed ID: 3700336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis.
    Amano A; Shizukuishi S; Tamagawa H; Iwakura K; Tsunasawa S; Tsunemitsu A
    J Bacteriol; 1990 Mar; 172(3):1457-63. PubMed ID: 2307656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.