These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6830521)

  • 41. Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear.
    Dechesne CJ; Thomasset M
    Brain Res; 1988 May; 468(2):233-42. PubMed ID: 3260120
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Embryonic inner ear cells reaggregate into specific patterns in vitro.
    Bianchi LM; Person AL; Penney EB
    J Assoc Res Otolaryngol; 2002 Dec; 3(4):418-29. PubMed ID: 12486597
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear.
    Forge A; Li L; Corwin JT; Nevill G
    Science; 1993 Mar; 259(5101):1616-9. PubMed ID: 8456284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effects of acute infrasound exposure on vestibular and auditory functions and the ultrastructural changes of inner ear in the guinea pig].
    Feng B; Jiang S; Yang W; Han D; Zhang S
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Feb; 36(1):18-21. PubMed ID: 12761900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrastructural correlates of inner ear sensory cell shortening.
    Ulfendahl M; Slepecky N
    J Submicrosc Cytol Pathol; 1988 Jan; 20(1):47-51. PubMed ID: 3370621
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Scanning electron microscopic study of inner ear barotrauma: in the guinea pig under hypobaric pressure].
    Tanabe T; Kozuka M; Fukuta S; Yanagita N
    Nihon Jibiinkoka Gakkai Kaiho; 1996 Jul; 99(7):991-8. PubMed ID: 8776972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Class III beta-tubulin expression in sensory and nonsensory regions of the developing avian inner ear.
    Molea D; Stone JS; Rubel EW
    J Comp Neurol; 1999 Apr; 406(2):183-98. PubMed ID: 10096605
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography.
    Sans A; Chat M
    J Comp Neurol; 1982 Mar; 206(1):1-8. PubMed ID: 6124561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Actin filaments in sensory hairs of inner ear receptor cells.
    Flock A; Cheung HC
    J Cell Biol; 1977 Nov; 75(2 Pt 1):339-43. PubMed ID: 318131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Therapeutic effect of insulin-like growth factor-1 injection into the inner ears through scala tympani fenestration on gentamicin-induced hearing loss in guinea pigs].
    Li YH; Chen H; Guo MH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Feb; 28(2):200-3. PubMed ID: 18250042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electron microscope observations on in vitro cultures of the isolated fowl embryo otocyst.
    FRIEDMANN I
    J Biophys Biochem Cytol; 1959 Mar; 5(2):263-8. PubMed ID: 13654447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hair cell differentiation in the developing chick cochlea and in embryonic cochlear organ culture.
    Stone JS; Cotanche DA
    J Comp Neurol; 1991 Dec; 314(3):614-25. PubMed ID: 1814978
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The freeze fracture technique in inner ear research.
    Anniko M; Wróblewski R
    Scan Electron Microsc; 1984; (Pt 4):2067-75. PubMed ID: 6523069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developmental gradients in the embryonic chick's basilar papilla.
    Fermin CD; Cohen GM
    Acta Otolaryngol; 1984; 97(1-2):39-51. PubMed ID: 6689829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inner ear content of glycosaminoglycans as shown by monoclonal antibodies.
    Hultcrantz M; Bagger-Sjoback D
    Acta Otolaryngol; 1996 Jan; 116(1):25-32. PubMed ID: 8820346
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development of the labyrinthine receptors in the guinea pig, cat and dog.
    Heywood P; Pujol R; Hilding DA
    Acta Otolaryngol; 1976; 82(5-6):359-67. PubMed ID: 998205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Middle ear application of a sodium hyaluronate gel loaded with neomycin in a Guinea pig model.
    Saber A; Laurell G; Bramer T; Edsman K; Engmér C; Ulfendahl M
    Ear Hear; 2009 Feb; 30(1):81-9. PubMed ID: 19125030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia.
    Kirjavainen A; Sulg M; Heyd F; Alitalo K; Ylä-Herttuala S; Möröy T; Petrova TV; Pirvola U
    Dev Biol; 2008 Oct; 322(1):33-45. PubMed ID: 18652815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbonic anhydrase activity in the inner ear.
    Hsu CJ; Nomura Y
    Acta Otolaryngol Suppl; 1985; 418():1-42. PubMed ID: 2411104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.