These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6830588)

  • 1. Further study discounts role for singlet oxygen in fungal degradation of lignin model compounds.
    Kirk TK; Nakatsubo F; Reid ID
    Biochem Biophys Res Commun; 1983 Feb; 111(1):200-4. PubMed ID: 6830588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds.
    Kirk TK; Mozuch MD; Tien M
    Biochem J; 1985 Mar; 226(2):455-60. PubMed ID: 2986597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the involvement of activated oxygen in fungal degradation of lignocellulose.
    Bes B; Ranjeva R; Boudet AM
    Biochimie; 1983; 65(4-5):283-9. PubMed ID: 6409163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium.
    Glenn JK; Morgan MA; Mayfield MB; Kuwahara M; Gold MH
    Biochem Biophys Res Commun; 1983 Aug; 114(3):1077-83. PubMed ID: 6615503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wood stimulates the demethoxylation of [O14CH3]-labeled lignin model compounds by the white-rot fungi Phanerochaete chrysosporium and Phlebia radiata.
    Niemenmaa O; Uusi-Rauva A; Hatakka A
    Arch Microbiol; 2006 May; 185(4):307-15. PubMed ID: 16502311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemistry of the oxidation of lignin by Phanerochaete chrysosporium.
    Kirk TK; Tien M; Faison BD
    Biotechnol Adv; 1984; 2(2):183-99. PubMed ID: 14545695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin.
    Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B
    Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of singlet oxygen in the fungal degradation of lignin.
    Nakatsubo F; Reid ID; Kirk TK
    Biochem Biophys Res Commun; 1981 Sep; 102(1):484-91. PubMed ID: 7306167
    [No Abstract]   [Full Text] [Related]  

  • 9. Christopher Foote's discovery of the role of singlet oxygen [1O2 (1Delta g)] in photosensitized oxidation reactions.
    Greer A
    Acc Chem Res; 2006 Nov; 39(11):797-804. PubMed ID: 17115719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological behavior of Phanerochaete chrysosporium broth during lignin degradation.
    Hernández-Peñaranda AM; Salazar-Montoya JA; Rodriguez-Vázquez R; Ramos-Ramirez EG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(10):1983-96. PubMed ID: 11759909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR studies on the kinetics of quenching singlet oxygen.
    Zang LY; Misra BR; van Kuijk FJ; Misra HP
    Biochem Mol Biol Int; 1995 Dec; 37(6):1187-95. PubMed ID: 8747549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation.
    Zhao M; Zhang C; Zeng G; Huang D; Xu P; Cheng M
    Chemosphere; 2015 Nov; 138():560-7. PubMed ID: 26210020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active ingredients.
    Allen JM; Gossett CJ; Allen SK
    Chem Res Toxicol; 1996; 9(3):605-9. PubMed ID: 8728505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dihydrocercosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora.
    Daub ME; Li M; Bilski P; Chignell CF
    Photochem Photobiol; 2000 Feb; 71(2):135-40. PubMed ID: 10687385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-C bond cleavage of a lignin model compound, 1,2-diarylpropane-1,3-diol, with a heme-enzyme model catalyst tetraphenylporphyrinatoiron(III)chloride in the presence of tert-butylhydroperoxide.
    Shimada M; Habe T; Umezawa T; Higuchi T; Okamoto T
    Biochem Biophys Res Commun; 1984 Aug; 122(3):1247-52. PubMed ID: 6477560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of lignin and nicotine with white rot fungi for the delignification and detoxification of tobacco stalk.
    Su Y; Xian H; Shi S; Zhang C; Manik SM; Mao J; Zhang G; Liao W; Wang Q; Liu H
    BMC Biotechnol; 2016 Nov; 16(1):81. PubMed ID: 27871279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase.
    Srebotnik E; Jensen KA; Hammel KE
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12794-7. PubMed ID: 11607502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Singlet oxygen mediated degradation of Klason lignin.
    Bentivenga G; Bonini C; D'Auria M; De Bona A; Mauriello G
    Chemosphere; 1999 Dec; 39(14):2409-17. PubMed ID: 10581695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation.
    Spadaro JT; Renganathan V
    Arch Biochem Biophys; 1994 Jul; 312(1):301-7. PubMed ID: 8031141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.