BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 6830780)

  • 1. Phospholipid transfer protein-mediated incorporation and subcellular distribution of exogenous phosphatidylcholine and sphingomyelin in cultured neuroblastoma cells.
    D'Souza C; Clarke JT; Cook HW; Spence MW
    Biochim Biophys Acta; 1983 Mar; 729(1):1-8. PubMed ID: 6830780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the turnover of endogenous choline-containing phospholipids of cultured neuroblastoma cells.
    D'Souza CJ; Clarke JT; Cook HW; Spence MW
    Biochim Biophys Acta; 1983 Aug; 752(3):467-73. PubMed ID: 6871241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of exogenous phosphatidylcholine in the plasma membrane of MDCK cells by a specific transfer protein.
    Zlatkine P; el Yandouzi EH; Op den Kamp JA; Le Grimellec C
    Biochim Biophys Acta; 1991 Jun; 1065(2):225-30. PubMed ID: 2059654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipid composition of subcellular fractions and phospholipid-exchange activity in chicken liver and MC-29 hepatoma.
    Koumanov K; Boyanov A; Neicheva T; Markovska T; Momchilova A; Gavazova E; Chelibonova-Lorer H
    Biochim Biophys Acta; 1982 Oct; 713(1):23-8. PubMed ID: 7138897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the nature of potential phosphorylcholine donors for filarial nematode glycoconjugates.
    Houston KM; Lochnit G; Geyer R; Harnett W
    Mol Biochem Parasitol; 2002 Aug; 123(1):55-66. PubMed ID: 12165389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism of exogenous and endogenous sphingomyelin and phosphatidylcholine by homogenates and subcellular fractions of cultured neuroblastoma cells. Effects of anesthetics.
    Mooibroek MJ; Cook HW; Clarke JT; Spence MW
    J Neurochem; 1985 May; 44(5):1551-8. PubMed ID: 3989549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphatidylcholine transfer protein from bovine liver discriminates between phosphatidylcholine isomers. A monolayer study.
    van Loon D; Demel RA; Wirtz KW
    Biochim Biophys Acta; 1986 Apr; 856(3):482-7. PubMed ID: 3964693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation-reacylation and de novo synthesis in plasma membranes.
    Chakravarthy BR; Spence MW; Cook HW
    Biochim Biophys Acta; 1986 Dec; 879(3):264-77. PubMed ID: 3778920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of liposomal phospholipid composition on cholesterol transfer between microsomal and liposomal vesicles.
    Bhuvaneswaran C; Mitropoulos KA
    Biochem J; 1986 Sep; 238(3):647-52. PubMed ID: 3800954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and enzymic synthesis of sphingomyelin.
    Voelker DR; Kennedy EP
    Biochemistry; 1982 May; 21(11):2753-9. PubMed ID: 7093220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of increased cholesteryl ester in human skin fibroblasts is caused by residual exogenous sphingomyelinase and is reversed by phospholipid liposomes.
    Stein O; Oette K; Dabach Y; Hollander G; Ben Naim M; Stein Y
    Biochim Biophys Acta; 1992 Dec; 1165(2):153-9. PubMed ID: 1450209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of phospholipid metabolism by phorbol esters and fatty acids occur by different intracellular mechanisms in cultured glioma, neuroblastoma, and hybrid cells.
    Cook HW; Byers DM; Palmer FB; Spence MW
    J Biol Chem; 1989 Feb; 264(5):2746-52. PubMed ID: 2914928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of bovine brain phospholipid exchange protein with liposomes of different lipid composition.
    Helmkamp GM
    Biochim Biophys Acta; 1980 Jan; 595(2):222-34. PubMed ID: 7352996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles.
    Allen TM
    Biochim Biophys Acta; 1981 Jan; 640(2):385-97. PubMed ID: 7213898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid-protein interactions in rat lung lamellar bodies.
    Nijssen JG; Promes LW; Hardeman D; van den Bosch H
    Biochim Biophys Acta; 1987 Jan; 917(1):140-7. PubMed ID: 3790603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways of sphingomyelin metabolism in cultured fibroblasts from normal and sphingomyelin lipidosis subjects.
    Spence MW; Clarke JT; Cook HW
    J Biol Chem; 1983 Jul; 258(14):8595-600. PubMed ID: 6863302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular phospholipid movement and the role of phospholipid transfer proteins in animal cells.
    Yaffe MP; Kennedy EP
    Biochemistry; 1983 Mar; 22(6):1497-507. PubMed ID: 6838865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and utilization of double-labeled high-density lipoprotein sphingomyelin in isolated brain capillaries of adult rats.
    Homayoun P; Bentejac M; Lecerf J; Bourre JM
    J Neurochem; 1989 Oct; 53(4):1031-5. PubMed ID: 2671262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, characterization and substrate specificity of rabbit lung phospholipid transfer proteins.
    Tsao FH; Tian Q; Strickland MS
    Biochim Biophys Acta; 1992 May; 1125(3):321-9. PubMed ID: 1596521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin from low- and high-density lipoprotein to human platelets.
    Engelmann B; Kögl C; Kulschar R; Schaipp B
    Biochem J; 1996 May; 315 ( Pt 3)(Pt 3):781-9. PubMed ID: 8645158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.