BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6830812)

  • 1. Pulse radiolysis kinetics of the reaction of hydrated electrons with ferric-, ferrous-, protoporphyrin IX- and apo-myoglobin.
    Hasinoff BB; Pecht I
    Biochim Biophys Acta; 1983 Mar; 743(3):310-5. PubMed ID: 6830812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence study of the conformational properties of myoglobin structure. 3. pH-dependent changes in porphyrin and tryptophan fluorescence of the complex of sperm whale apomyoglobin with protoporphyrin IX; the role of the porphyrin macrocycle and iron in formation of native myoglobin structure.
    Postnikova GB; Yumakova EM
    Eur J Biochem; 1991 May; 198(1):241-6. PubMed ID: 2040285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameters controlling the kinetics of ferric and ferrous hemeproteins reduction by hydrated electrons.
    Pin S; Hickel B; Alpert B; Ferradini C
    Biochim Biophys Acta; 1989 Jan; 994(1):47-51. PubMed ID: 2909254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(II) protoporphyrin IX as a reporter group for the heme environment in myoglobin.
    Alston K; Storm CB
    Biochemistry; 1979 Oct; 18(20):4292-300. PubMed ID: 226124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectroscopy study.
    Lecomte JT; Cocco MJ
    Biochemistry; 1990 Dec; 29(50):11057-67. PubMed ID: 2176891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient spectroscopy of the reaction of cyanide with ferrous myoglobin. Effect of distal side residues.
    Bellelli A; Antonini G; Brunori M; Springer BA; Sligar SG
    J Biol Chem; 1990 Nov; 265(31):18898-901. PubMed ID: 2229052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific modification of structure and property of myoglobin by the formation of tetrazolylhistidine 64(E7). Reaction of the modified myoglobin with molecular oxygen.
    Shiro Y; Iwata T; Makino R; Fujii M; Isogai Y; Iizuka T
    J Biol Chem; 1993 Sep; 268(27):19983-90. PubMed ID: 8397193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere.
    Hirota S; Azuma K; Fukuba M; Kuroiwa S; Funasaki N
    Biochemistry; 2005 Aug; 44(30):10322-7. PubMed ID: 16042409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the heme distal side in myoglobin by cyanogen bromide. Heme environmental structures and ligand binding properties of the modified myoglobin.
    Shiro Y; Morishima I
    Biochemistry; 1984 Oct; 23(21):4879-84. PubMed ID: 6498165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan-to-heme electron transfer in ferrous myoglobins.
    Monni R; Al Haddad A; van Mourik F; Auböck G; Chergui M
    Proc Natl Acad Sci U S A; 2015 May; 112(18):5602-6. PubMed ID: 25902517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance Raman spectral properties and stability of manganese protoporphyrin IX cytochrome b5.
    Gruenke LD; Sun J; Loehr TM; Waskell L
    Biochemistry; 1997 Jun; 36(23):7114-25. PubMed ID: 9188711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR).
    Miller LM; Pedraza AJ; Chance MR
    Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and mechanism of *NO2 reacting with various oxidation states of myoglobin.
    Goldstein S; Merenyi G; Samuni A
    J Am Chem Soc; 2004 Dec; 126(48):15694-701. PubMed ID: 15571391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme orientation affects holo-myoglobin folding and unfolding kinetics.
    Moczygemba C; Guidry J; Wittung-Stafshede P
    FEBS Lett; 2000 Mar; 470(2):203-6. PubMed ID: 10734234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral studies of magnesium porphyrin--apomyoglobin and apohemoglobin complexes.
    Ong CC; Rodley GA
    J Inorg Biochem; 1983 Nov; 19(3):189-202. PubMed ID: 6644293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the formation and reactivity of compound I of the His-64 myoglobin mutants.
    Matsui T; Ozaki Si; Watanabe Y
    J Biol Chem; 1997 Dec; 272(52):32735-8. PubMed ID: 9407045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-electron reduction of the oxy form of cobalt-substituted hemoproteins.
    Kobayashi K; Amano M; Hayashi K
    Biochim Biophys Acta; 1990 Mar; 1037(3):297-301. PubMed ID: 2310746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assignment of the heme axial ligand(s) for the ferric myoglobin (H93G) and heme oxygenase (H25A) cavity mutants as oxygen donors using magnetic circular dichroism.
    Pond AE; Roach MP; Sono M; Rux AH; Franzen S; Hu R; Thomas MR; Wilks A; Dou Y; Ikeda-Saito M; Ortiz de Montellano PR; Woodruff WH; Boxer SG; Dawson JH
    Biochemistry; 1999 Jun; 38(23):7601-8. PubMed ID: 10360958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of myoglobin-ligand complexes at near-atomic resolution.
    Vojtechovský J; Chu K; Berendzen J; Sweet RM; Schlichting I
    Biophys J; 1999 Oct; 77(4):2153-74. PubMed ID: 10512835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement of a second oxidation equivalent for ferryl oxygen transfer to styrene in the epoxidation catalyzed by myoglobin-H2O2.
    Choe YS; Rao SI; Ortiz de Montellano PR
    Arch Biochem Biophys; 1994 Oct; 314(1):126-31. PubMed ID: 7944384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.