BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6832229)

  • 1. Dynamic changes in intact crystalline lens metabolism modulated by alkaline earth metals: I. Effects of magnesium.
    Kopp SJ; Glonek T; Greiner JV
    Exp Eye Res; 1983 Mar; 36(3):327-35. PubMed ID: 6832229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lenticular energy metabolism during exogenous calcium deprivation and during recovery: effects of dextran-40.
    Glonek T; Kopp SJ; Greiner JV; Sanders DR
    Exp Eye Res; 1985 Feb; 40(2):169-78. PubMed ID: 2579839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus-31 NMR analysis of dynamic energy metabolism in intact crystalline lens treated with ouabain: phosphorylated metabolites.
    Greiner JV; Kopp SJ; Glonek T
    Ophthalmic Res; 1985; 17(5):269-78. PubMed ID: 4069565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the slow calcium-channel blocker verapamil on phosphatic metabolism of crystalline lens.
    Greiner JV; Glonek T
    Exp Eye Res; 1988 Feb; 46(2):139-48. PubMed ID: 3350061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in the organophosphate profile upon treatment of the crystalline lens with dexamethasone.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):14-22. PubMed ID: 7085218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):613-24. PubMed ID: 7076407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organophosphates of the crystalline lens: a nuclear magnetic resonance spectroscopic study.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):700-13. PubMed ID: 7298274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus and proton magnetic resonance spectroscopic studies on the relationship between transparency and glucose metabolism in the rabbit lens.
    Williams WF; Austin CD; Farnsworth PN; Groth-Vasselli B; Willis JA; Schleich T
    Exp Eye Res; 1988 Jul; 47(1):97-112. PubMed ID: 2842177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatic metabolites of the intact cornea by phosphorus-31 nuclear magnetic resonance.
    Greiner JV; Kopp SJ; Gillette TE; Glonek T
    Invest Ophthalmol Vis Sci; 1983 May; 24(5):535-42. PubMed ID: 6840999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intralenticular water interactions with phosphates in the intact crystalline lens.
    Glonek T; Greiner JV
    Ophthalmic Res; 1990; 22(5):302-9. PubMed ID: 2090984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of prolonged elevated glucose levels on the phosphate metabolism of the rabbit lens in perfused organ culture.
    Willis JA; Schleich T
    Exp Eye Res; 1986 Sep; 43(3):329-41. PubMed ID: 3780877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP, ADP, and magnesium mixed solutions: in vitro 31P NMR characterization and in vivo application to lens.
    Burt CT; Cheng HM; Gabel S; London RE
    J Biochem; 1990 Sep; 108(3):441-8. PubMed ID: 2277036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered phosphate metabolism in the intact rabbit lens under high glucose conditions and its prevention by an aldose reductase inhibitor.
    González RG; Barnett P; Cheng HM; Chylack LT
    Exp Eye Res; 1984 Nov; 39(5):553-62. PubMed ID: 6440802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface coil phosphorus-31 nuclear magnetic resonance studies of the intact eye.
    Schleich T; Matson GB; Willis JA; Acosta G; Serdahl C; Campbell P; Garwood M
    Exp Eye Res; 1985 Mar; 40(3):343-55. PubMed ID: 4065231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some observations on the magnesium metabolism of the rabbit lens.
    McGahan MC; Chin B; Bentley PJ
    Exp Eye Res; 1983 Jan; 36(1):67-73. PubMed ID: 6402371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrotropic function of ATP in the crystalline lens.
    Greiner JV; Glonek T
    Exp Eye Res; 2020 Jan; 190():107862. PubMed ID: 31669043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 31P nuclear magnetic resonance and laser spectroscopic analyses of lens transparency during calcium-induced opacification.
    Beaulieu CF; Clark JI
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1339-47. PubMed ID: 2365564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of phosphatic metabolites in the crystalline lens.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):537-44. PubMed ID: 3980170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus nuclear magnetic resonance and ocular metabolism.
    Greiner JV; Kopp SJ; Glonek T
    Surv Ophthalmol; 1985; 30(3):189-202. PubMed ID: 3909470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract.
    Sakagami K; Igarashi H; Tanaka K; Yoshida A
    Hokkaido Igaku Zasshi; 1999 Nov; 74(6):457-66. PubMed ID: 10642892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.