These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 6832285)

  • 41. Suppression and potentiation of 5-hydroxytryptophan-induced hypoglycaemia by alpha-monofluoromethyldopa: correlation with the accumulation of 5-hydroxytryptamine in the liver.
    Endo Y
    Br J Pharmacol; 1987 Jan; 90(1):161-5. PubMed ID: 3493049
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of 3,4-dihydroxyphenylacetic acid and 3-methoxytyramine specific activity rat striatum.
    Di Giulio AM; Groppetti A; Algeri S; Ponzio F; Cattabeni F; Galli CL
    Anal Biochem; 1979 Jan; 92(1):82-90. PubMed ID: 426290
    [No Abstract]   [Full Text] [Related]  

  • 43. Tyrosine administration increases striatal dopamine release in rats with partial nigrostriatal lesions.
    Melamed E; Hefti F; Wurtman RJ
    Proc Natl Acad Sci U S A; 1980 Jul; 77(7):4305-9. PubMed ID: 6254020
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Further studies on the inhibition of monoamine synthesis by monofluoromethyldopa.
    Bey P; Jung MJ; Koch-Weser J; Palfreyman MG; Sjoerdsma A; Wagner J; Zraïka M
    Br J Pharmacol; 1980 Dec; 70(4):571-6. PubMed ID: 7470730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of D-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse.
    Juorio AV
    Brain Res; 1977 Apr; 126(1):181-4. PubMed ID: 15705
    [No Abstract]   [Full Text] [Related]  

  • 46. Postnatal development of dopamine deamination in the striatum of the rat.
    Davis AJ; Holzbauer M; Sharman DF
    Br J Pharmacol; 1975 Dec; 55(4):558-60. PubMed ID: 1212563
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis.
    Wolken WA; Lucas PM; Lonvaud-Funel A; Lolkema JS
    J Bacteriol; 2006 Mar; 188(6):2198-206. PubMed ID: 16513749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of zimelidine and amitriptyline on the brain concentration of some indolic and phenolic monoamines in the mouse.
    Juorio AV; Boulton AA
    Eur J Pharmacol; 1984 Jan; 97(3-4):191-6. PubMed ID: 6200338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: cyp2d6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling.
    Zhu W; Mantione KJ; Shen L; Cadet P; Esch T; Goumon Y; Bianchi E; Sonetti D; Stefano GB
    Med Sci Monit; 2005 Nov; 11(11):BR397-404. PubMed ID: 16258388
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of alpha-methyldopa and alpha-methyl-m-tyrosine on the mobilization of free fatty acids.
    Stock K; Westermann E
    Experientia; 1964 Sep; 20(9):495-6. PubMed ID: 4379187
    [No Abstract]   [Full Text] [Related]  

  • 51. BIA 3-202, a novel catechol-O-methyltransferase inhibitor, enhances the availability of L-DOPA to the brain and reduces its O-methylation.
    Parada A; Loureiro AI; Vieira-Coelho MA; Hainzl D; Soares-da-Silva P
    Eur J Pharmacol; 2001 May; 420(1):27-32. PubMed ID: 11412836
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cannabinoid induced changes in mouse striatal homovanillic acid and dihydroxyphenylacetic acid: the effects of amphetamine and L-dopa.
    Osgood P; Howes J
    Res Commun Chem Pathol Pharmacol; 1974 Dec; 9(4):621-31. PubMed ID: 4456495
    [No Abstract]   [Full Text] [Related]  

  • 53. Urinary p-tyramine in hereditary tyrosinemia: II. Origin of urinary p-tyramine.
    Hoag GN; Hill A; Zaleski W
    Clin Biochem; 1977 Feb; 10(1):26-8. PubMed ID: 837523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical and cardiovascular effects of alpha methyldopa in combination with decarboxylase inhibitors.
    Kersting F; Reid JL; Dollery CT
    Clin Pharmacol Ther; 1977 May; 21(5):547-55. PubMed ID: 322921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and characterization of a L-tyrosine decarboxylase in Methanocaldococcus jannaschii.
    Kezmarsky ND; Xu H; Graham DE; White RH
    Biochim Biophys Acta; 2005 Mar; 1722(2):175-82. PubMed ID: 15715981
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic decarboxylation of tyrosine and phenylalanine to enhance volatility for high-precision isotopic analysis.
    Ziadeh BI; Michaud AL; Saad NM; Lewis BA; Rafii M; Pencharz PB; Brenna JT
    Anal Chem; 2002 Jan; 74(2):479-83. PubMed ID: 11817371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Decarboxylation to tyramine is not a major route of tyrosine metabolism in mammals.
    Fellman JH; Roth ES; Fujita TS
    Arch Biochem Biophys; 1976 Jun; 174(2):562-7. PubMed ID: 1230008
    [No Abstract]   [Full Text] [Related]  

  • 58. Pharmacokinetic profile of methyldopa in the brain of sinaortic-denervated rats.
    Opezzo JA; Höcht C; Taira CA
    Pharmacol Res; 2003 Jul; 48(1):61-7. PubMed ID: 12770516
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Inhibitors of catecholamine biosynthesis (review of the literature)].
    Frantsuzova SB
    Farmakol Toksikol; 1973; 36(5):624-8. PubMed ID: 4150865
    [No Abstract]   [Full Text] [Related]  

  • 60. Factors affecting tyramine production in Enterococcus durans IPLA 655.
    Fernández M; Linares DM; Rodríguez A; Alvarez MA
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1400-6. PubMed ID: 17043827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.