BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 6833177)

  • 1. Purine and glycine metabolism by purinolytic clostridia.
    Dürre P; Andreesen JR
    J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized.
    Self WT; Stadtman TC
    Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7208-13. PubMed ID: 10860985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum.
    Self WT
    J Bacteriol; 2002 Apr; 184(7):2039-44. PubMed ID: 11889113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of purines to xanthine by Methanococcus vannielii.
    DeMoll E; Tsai L
    Arch Biochem Biophys; 1986 Nov; 250(2):440-5. PubMed ID: 3777942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration.
    Hartwich K; Poehlein A; Daniel R
    PLoS One; 2012; 7(12):e51662. PubMed ID: 23240052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum.
    Dürre P; Andreesen JR
    J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative studies on physiology and taxonomy of obligately purinolytic clostridia.
    Schiefer-Ullrich H; Wagner R; Dürre P; Andreesen JR
    Arch Microbiol; 1984 Aug; 138(4):345-53. PubMed ID: 6477034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purine fermentation by Clostridium cylindrosporum. V. Formiminoglycine.
    PRICER WE; RABINOWITZ JC
    J Biol Chem; 1956 Oct; 222(2):537-54. PubMed ID: 13367024
    [No Abstract]   [Full Text] [Related]  

  • 9. Purification and comparative studies of dihydrolipoamide dehydrogenases from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and Clostridium sporogenes.
    Dietrichs D; Andreesen JR
    J Bacteriol; 1990 Jan; 172(1):243-51. PubMed ID: 2294086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferredoxin and formyltetrahydrofolate synthetase: comparative studies with Clostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains.
    Champion AB; Rabinowitz JC
    J Bacteriol; 1977 Dec; 132(3):1003-20. PubMed ID: 411781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum.
    Wagner R; Andreesen JR
    Arch Microbiol; 1979 Jun; 121(3):255-60. PubMed ID: 518233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor determination and spectroscopic characterization of the selenium-dependent purine hydroxylase from Clostridium purinolyticum.
    Self WT; Wolfe MD; Stadtman TC
    Biochemistry; 2003 Sep; 42(38):11382-90. PubMed ID: 14503889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici.
    Waber LJ; Wood HG
    J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Germination of Clostridium cylindrosporum Spores on Medium Containing Uric Acid.
    Smith M; Sullivan C
    Appl Environ Microbiol; 1989 Jun; 55(6):1380-5. PubMed ID: 16347931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purine metabolism in Saccharomyces cerevisiae.
    Burridge PW; Woods RA; Henderson JF
    Can J Biochem; 1977 Sep; 55(9):935-41. PubMed ID: 332289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of excessive purine biosynthesis in hypoxanthine-guanine phosphoribosyltransferase deficiency.
    Sorensen LB
    J Clin Invest; 1970 May; 49(5):968-78. PubMed ID: 5441549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation.
    Wagner R; Andreesen JR
    Arch Microbiol; 1977 Sep; 114(3):219-24. PubMed ID: 911212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purine metabolism in the intact sporozoites and merozoites of Eimeria tenella.
    LaFon SW; Nelson DJ
    Mol Biochem Parasitol; 1985 Jan; 14(1):11-22. PubMed ID: 2580236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum.
    Dürre P; Andreesen JR
    Arch Microbiol; 1982 May; 131(3):255-60. PubMed ID: 6808963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria.
    Schulman M; Parker D; Ljungdahl LG; Wood HG
    J Bacteriol; 1972 Feb; 109(2):633-44. PubMed ID: 5058447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.