These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 6833177)
1. Purine and glycine metabolism by purinolytic clostridia. Dürre P; Andreesen JR J Bacteriol; 1983 Apr; 154(1):192-9. PubMed ID: 6833177 [TBL] [Abstract][Full Text] [Related]
2. Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. Self WT; Stadtman TC Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7208-13. PubMed ID: 10860985 [TBL] [Abstract][Full Text] [Related]
3. Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum. Self WT J Bacteriol; 2002 Apr; 184(7):2039-44. PubMed ID: 11889113 [TBL] [Abstract][Full Text] [Related]
4. Conversion of purines to xanthine by Methanococcus vannielii. DeMoll E; Tsai L Arch Biochem Biophys; 1986 Nov; 250(2):440-5. PubMed ID: 3777942 [TBL] [Abstract][Full Text] [Related]
5. The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration. Hartwich K; Poehlein A; Daniel R PLoS One; 2012; 7(12):e51662. PubMed ID: 23240052 [TBL] [Abstract][Full Text] [Related]
6. Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum. Dürre P; Andreesen JR J Gen Microbiol; 1982 Jul; 128(7):1457-66. PubMed ID: 7119740 [TBL] [Abstract][Full Text] [Related]
7. Comparative studies on physiology and taxonomy of obligately purinolytic clostridia. Schiefer-Ullrich H; Wagner R; Dürre P; Andreesen JR Arch Microbiol; 1984 Aug; 138(4):345-53. PubMed ID: 6477034 [TBL] [Abstract][Full Text] [Related]
12. Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Wagner R; Andreesen JR Arch Microbiol; 1979 Jun; 121(3):255-60. PubMed ID: 518233 [TBL] [Abstract][Full Text] [Related]
13. Cofactor determination and spectroscopic characterization of the selenium-dependent purine hydroxylase from Clostridium purinolyticum. Self WT; Wolfe MD; Stadtman TC Biochemistry; 2003 Sep; 42(38):11382-90. PubMed ID: 14503889 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici. Waber LJ; Wood HG J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560 [TBL] [Abstract][Full Text] [Related]
15. Germination of Clostridium cylindrosporum Spores on Medium Containing Uric Acid. Smith M; Sullivan C Appl Environ Microbiol; 1989 Jun; 55(6):1380-5. PubMed ID: 16347931 [TBL] [Abstract][Full Text] [Related]
18. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Wagner R; Andreesen JR Arch Microbiol; 1977 Sep; 114(3):219-24. PubMed ID: 911212 [TBL] [Abstract][Full Text] [Related]
19. Purine metabolism in the intact sporozoites and merozoites of Eimeria tenella. LaFon SW; Nelson DJ Mol Biochem Parasitol; 1985 Jan; 14(1):11-22. PubMed ID: 2580236 [TBL] [Abstract][Full Text] [Related]
20. Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum. Dürre P; Andreesen JR Arch Microbiol; 1982 May; 131(3):255-60. PubMed ID: 6808963 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]