These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6833277)

  • 1. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins.
    Lakowicz JR; Maliwal BP
    J Biol Chem; 1983 Apr; 258(8):4794-801. PubMed ID: 6833277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ligand binding and conformational changes in proteins on oxygen quenching and fluorescence depolarization of tryptophan residues.
    Maliwal BP; Lakowicz JR
    Biophys Chem; 1984 Jun; 19(4):337-44. PubMed ID: 17005145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosecond motions of the single tryptophan residues in apolipoproteins C-I and C-II: a study by oxygen quenching and fluorescence depolarization.
    Maliwal BP; Cardin AD; Jackson RL; Lakowicz JR
    Arch Biochem Biophys; 1985 Jan; 236(1):370-8. PubMed ID: 3966801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational freedom of tryptophan residues in proteins and peptides.
    Lakowicz JR; Maliwal BP; Cherek H; Balter A
    Biochemistry; 1983 Apr; 22(8):1741-52. PubMed ID: 6849881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence depolarization and rotational modes of tyrosine in bovine pancreatic trypsin inhibitor.
    Kasprzak A; Weber G
    Biochemistry; 1982 Nov; 21(23):5924-7. PubMed ID: 6185143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural fluctuations in aspartate transcarbamylase. Succinimide quenching and fluorescence depolarization of tryptophan and tyrosine residues.
    Maliwal BP; Allewell NM; Lakowicz JR
    Biophys Chem; 1984 Oct; 20(3):209-16. PubMed ID: 6388653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study.
    Ichiye T; Karplus M
    Biochemistry; 1983 Jun; 22(12):2884-93. PubMed ID: 6871168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of the electronic and steric environments of tyrosyl residues in ribonuclease A and Erwinia carotovora L-asparaginase through fluorescence quenching by caesium, iodide and phosphate ions.
    Homer RB; Allsopp SR
    Biochim Biophys Acta; 1976 Jun; 434(2):297-310. PubMed ID: 986170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reactivity of tryptophan residues in proteins. Stopped-flow kinetics of fluorescence quenching.
    Peterman BF; Laidler KJ
    Biochim Biophys Acta; 1979 Apr; 577(2):314-23. PubMed ID: 454650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and dynamics of the alpha-lactalbumin molten globule: fluorescence studies using proteins containing a single tryptophan residue.
    Chakraborty S; Ittah V; Bai P; Luo L; Haas E; Peng Z
    Biochemistry; 2001 Jun; 40(24):7228-38. PubMed ID: 11401570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyrosine fluorescence of two tryptophan-free proteins: histones H1 and H5.
    Giancotti V; Fonda M; Crane-Robinson C
    Biophys Chem; 1977 Apr; 6(3):379-83. PubMed ID: 18223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quenching-resolved emission anisotropy studies with single and multitryptophan-containing proteins.
    Eftink M
    Biophys J; 1983 Sep; 43(3):323-34. PubMed ID: 6354292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching studies of apolipoprotein A-I in solution and in lipid-protein complexes: protein dynamics.
    Mantulin WW; Pownall HJ; Jameson DM
    Biochemistry; 1986 Dec; 25(24):8034-42. PubMed ID: 3099838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements.
    Haas E; Montelione GT; McWherter CA; Scheraga HA
    Biochemistry; 1987 Mar; 26(6):1672-83. PubMed ID: 3593685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of adrenocorticotropic hormone conformation by evaluation of intramolecular resonance energy transfer in N -dansyllysine 21 -ACTH-(1-24)-tetrakosipeptide.
    Schiller PW
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):975-9. PubMed ID: 4337249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrylamide and iodide fluorescence quenching as a structural probe of tryptophan microenvironment in bovine lens crystallins.
    Phillips SR; Wilson LJ; Borkman RF
    Curr Eye Res; 1986 Aug; 5(8):611-9. PubMed ID: 3757547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. Support for a segmented structure.
    Casas-Finet JR; Karpel RL; Maki AH; Kumar A; Wilson SH
    J Mol Biol; 1991 Sep; 221(2):693-709. PubMed ID: 1656054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.