These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6833306)

  • 1. An analysis of tibial component design in total knee arthroplasty.
    Murase K; Crowninshield RD; Pedersen DR; Chang TS
    J Biomech; 1983; 16(1):13-22. PubMed ID: 6833306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of tibial component malalignment on bone strain in revision total knee replacement.
    Rastetter BR; Wright SJ; Gheduzzi S; Miles AW; Clift SE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):561-8. PubMed ID: 27006420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-polyethylene tibial components generate higher stress and micromotions than metal-backed tibial components in total knee arthroplasty.
    Brihault J; Navacchia A; Pianigiani S; Labey L; De Corte R; Pascale V; Innocenti B
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2550-9. PubMed ID: 25957612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative evaluation of tibial component designs of total knee prostheses.
    Lewis JL; Askew MJ; Jaycox DP
    J Bone Joint Surg Am; 1982 Jan; 64(1):129-35. PubMed ID: 7054194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis of the implanted proximal tibia: a relationship between the initial cancellous bone stresses and implant migration.
    Taylor M; Tanner KE; Freeman MA
    J Biomech; 1998 Apr; 31(4):303-10. PubMed ID: 9672083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full and surface tibial cementation in total knee arthroplasty: a biomechanical investigation of stress distribution and remodeling in the tibia.
    Cawley DT; Kelly N; Simpkin A; Shannon FJ; McGarry JP
    Clin Biomech (Bristol, Avon); 2012 May; 27(4):390-7. PubMed ID: 22079691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-polyethylene tibial components in distal femur limb-salvage surgery: a finite element analysis based on promising clinical outcomes.
    Tang F; Zhou Y; Zhang W; Min L; Shi R; Luo Y; Duan H; Tu C
    J Orthop Surg Res; 2017 Apr; 12(1):57. PubMed ID: 28376828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixation of tibial components of knee prostheses.
    Walker PS; Greene D; Reilly D; Thatcher J; Ben-Dov M; Ewald FC
    J Bone Joint Surg Am; 1981 Feb; 63(2):258-67. PubMed ID: 7462283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of model variables and fixation post length effects on stresses around a prosthesis in the proximal tibia.
    Askew MJ; Lewis JL
    J Biomech Eng; 1981 Nov; 103(4):239-45. PubMed ID: 7311489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric analysis of fixation post shape in tibial knee prostheses.
    Au AG; Liggins AB; Raso VJ; Amirfazli A
    Med Eng Phys; 2005 Mar; 27(2):123-34. PubMed ID: 15642508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Cam Design and Contact Stress on Tibial Posts in Posterior-Stabilized Total Knee Prostheses: Comparison Between a Rounded and a Squared Design.
    Watanabe T; Koga H; Horie M; Katagiri H; Sekiya I; Muneta T
    J Arthroplasty; 2017 Dec; 32(12):3757-3762. PubMed ID: 28780225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of varus/valgus malalignment on bone strains in the proximal tibia after TKR: an explicit finite element study.
    Perillo-Marcone A; Taylor M
    J Biomech Eng; 2007 Feb; 129(1):1-11. PubMed ID: 17227092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epiphyseal-based designs for tibial plateau components--I. Stress analysis in the frontal plane.
    Vasu R; Carter DR; Schurman DJ; Beaupré GS
    J Biomech; 1986; 19(8):647-62. PubMed ID: 3771587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does the inclination of the tibial component matter? A three-dimensional finite element analysis of medial mobile-bearing unicompartmental arthroplasty.
    Dai X; Fang J; Jiang L; Xiong Y; Zhang M; Zhu S
    Knee; 2018 Jun; 25(3):434-444. PubMed ID: 29685499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of the tibial component in total knee replacement.
    Bartel DL; Burstein AH; Santavicca EA; Insall JN
    J Bone Joint Surg Am; 1982 Sep; 64(7):1026-33. PubMed ID: 7118966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catastrophic Varus Collapse of the Tibia in Obese Total Knee Arthroplasty.
    Fehring TK; Fehring KA; Anderson LA; Otero JE; Springer BD
    J Arthroplasty; 2017 May; 32(5):1625-1629. PubMed ID: 28202207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress analysis of a condylar knee tibial component: influence of metaphyseal shell properties and cement injection depth.
    Cheal EJ; Hayes WC; Lee CH; Snyder BD; Miller J
    J Orthop Res; 1985; 3(4):424-34. PubMed ID: 4067701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and anchorage considerations for cementless tibial components.
    Dempsey AJ; Finlay JB; Bourne RB; Rorabeck CH; Scott MA; Millman JC
    J Arthroplasty; 1989 Sep; 4(3):223-30. PubMed ID: 2795029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement.
    Chong DY; Hansen UN; van der Venne R; Verdonschot N; Amis AA
    J Biomech; 2011 Mar; 44(5):948-54. PubMed ID: 21236431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method.
    Apostolopoulos V; Tomáš T; Boháč P; Marcián P; Mahdal M; Valoušek T; Janíček P; Nachtnebl L
    Comput Methods Programs Biomed; 2022 Jun; 220():106834. PubMed ID: 35490458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.