These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. The effects of 5% carbon dioxide on the quantitative analysis of long-term pathology of the brain after surface hypothermia. Ohmi M; Sato S; Ito T; Haneda K; Mohri H Cryobiology; 1990 Feb; 27(1):31-41. PubMed ID: 2107059 [TBL] [Abstract][Full Text] [Related]
8. Prolongation of total permissible circulatory arrest duration by deep hypothermic intermittent circulatory arrest. Niwa H; Nara M; Kimura T; Chiba Y; Ihaya A; Morioka K; Uesaka T; Tsuda T; Muraoka R J Thorac Cardiovasc Surg; 1998 Jul; 116(1):163-70. PubMed ID: 9671911 [TBL] [Abstract][Full Text] [Related]
10. Subclinical changes in brain morphology following cardiac operations as reflected by computed tomographic scans of the brain. Muraoka R; Yokota M; Aoshima M; Kyoku I; Nomoto S; Kobayashi A; Nakano H; Ueda K; Saito A; Hojo H J Thorac Cardiovasc Surg; 1981 Mar; 81(3):364-9. PubMed ID: 7464200 [TBL] [Abstract][Full Text] [Related]
11. Complete recovery after normothermic hemorrhagic shock and profound hypothermic circulatory arrest of 60 minutes in dogs. Capone A; Safar P; Radovsky A; Wang YF; Peitzman A; Tisherman SA J Trauma; 1996 Mar; 40(3):388-95. PubMed ID: 8601855 [TBL] [Abstract][Full Text] [Related]
12. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435 [TBL] [Abstract][Full Text] [Related]
13. Advantages of hypothermic potassium cardioplegia and superiority of continuous versus intermittent aortic cross-clamping. Roberts AJ; Abel RM; Alonso DR; Subramanian VA; Paul JS; Gay WA J Thorac Cardiovasc Surg; 1980 Jan; 79(1):44-58. PubMed ID: 7350388 [TBL] [Abstract][Full Text] [Related]
14. Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective antegrade cerebral perfusion: which temperature provides best brain protection? Khaladj N; Peterss S; Oetjen P; von Wasielewski R; Hauschild G; Karck M; Haverich A; Hagl C Eur J Cardiothorac Surg; 2006 Sep; 30(3):492-8. PubMed ID: 16857368 [TBL] [Abstract][Full Text] [Related]
16. Pulsatile perfusion versus conventional high-flow nonpulsatile perfusion for rapid core cooling and rewarming of infants for circulatory arrest in cardiac operation. Williams GD; Seifen AB; Lawson NW; Norton JB; Readinger RI; Dungan TW; Callaway JK; Campbell GS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):667-77. PubMed ID: 491721 [TBL] [Abstract][Full Text] [Related]
17. Quantitative evaluation of myocardial ultrastructure following hypothermic anoxic arrest. Sunamori M; Trout RG; Kaye MP; Harrison CE J Thorac Cardiovasc Surg; 1978 Oct; 76(4):518-27. PubMed ID: 703359 [TBL] [Abstract][Full Text] [Related]
18. Effect of temperature during potassium arrest on myocardial metabolism and function. Kao RL; Conti VR; Williams EH J Thorac Cardiovasc Surg; 1982 Aug; 84(2):243-9. PubMed ID: 7098510 [TBL] [Abstract][Full Text] [Related]
19. Systemic hypothermia and circulatory arrest combined with arterial perfusion of the superior vena cava. Effective intraoperative cerebral protection. Lytle BW; McCarthy PM; Meaney KM; Stewart RW; Cosgrove DM J Thorac Cardiovasc Surg; 1995 Apr; 109(4):738-43. PubMed ID: 7715222 [TBL] [Abstract][Full Text] [Related]
20. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest. Shin'oka T; Shum-Tim D; Jonas RA; Lidov HG; Laussen PC; Miura T; du Plessis A J Thorac Cardiovasc Surg; 1996 Dec; 112(6):1610-20; discussion 1620-1. PubMed ID: 8975853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]