These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 6833361)

  • 1. Isolation and characterization of the erythroid progenitor cell: CFU-E.
    Nijhof W; Wierenga PK
    J Cell Biol; 1983 Feb; 96(2):386-92. PubMed ID: 6833361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of hemopoietic pluripotent stem cells from spleens of thiamphenicol-pretreated mice.
    Nijhof W; Wierenga PK
    Exp Cell Res; 1984 Dec; 155(2):583-7. PubMed ID: 6499949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migration of stem cells and progenitors between marrow and spleen following thiamphenicol treatment of mice.
    Goris H; Bungart B; Loeffler M; Schmitz S; Nijhof W
    Exp Hematol; 1990 Jun; 18(5):400-7. PubMed ID: 2338129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell kinetic behaviour of a synchronized population of erythroid precursor cells in vitro.
    Nijhof W; Wierenga PK; Pietens J; Bloem R
    Cell Tissue Kinet; 1984 Nov; 17(6):629-39. PubMed ID: 6488280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in activities and isozyme patterns of glycolytic enzymes during erythroid differentiation in vitro.
    Nijhof W; Wierenga PK; Staal GE; Jansen G
    Blood; 1984 Sep; 64(3):607-13. PubMed ID: 6466870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemopoiesis during thiamphenicol treatment. II. A theoretical analysis shows consistency of new data with a previously hypothesized model of stem cell regulation.
    Loeffler M; Bungart B; Goris H; Schmitz S; Nijhof W
    Exp Hematol; 1989 Oct; 17(9):962-7. PubMed ID: 2776856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of human recombinant erythropoietin on differentiation and distribution of erythroid progenitor cells on murine medullary and splenic erythropoiesis during hypoxia and post-hypoxia.
    Mide SM; Huygens P; Bozzini CE; Fernandez Pol JA
    In Vivo; 2001; 15(2):125-32. PubMed ID: 11317516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a cycling murine pluripotent stem cell population.
    Nijhof W; Wierenga PK
    Eur J Cell Biol; 1985 Nov; 39(1):136-41. PubMed ID: 2867904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of erythroid progenitor cells in mouse bone marrow by isokinetic-gradient sedimentation.
    Misiti J; Spivak JL
    Blood; 1979 Jul; 54(1):105-16. PubMed ID: 444660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal erythroid cell production during erythropoietin treatment of mice occurs by exploiting the splenic microenvironment.
    Nijhof W; Goris H; Dontje B; Dresz J; Loeffler M
    Exp Hematol; 1993 Apr; 21(4):496-501. PubMed ID: 8462658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells.
    Broxmeyer HE; Lu L; Platzer E; Feit C; Juliano L; Rubin BY
    J Immunol; 1983 Sep; 131(3):1300-5. PubMed ID: 6193183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin.
    Sawada K; Krantz SB; Kans JS; Dessypris EN; Sawyer S; Glick AD; Civin CI
    J Clin Invest; 1987 Aug; 80(2):357-66. PubMed ID: 3038955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of erythropoiesis and myelopoiesis by exogenous erythropoietin in human long-term marrow cultures.
    Mayani H; Guilbert LJ; Janowska-Wieczorek A
    Exp Hematol; 1990 Mar; 18(3):174-9. PubMed ID: 2303109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythropoietin responses and physical characterization of erythroid progenitor cells in Rauscher virus infected BALB/c mice.
    Hasthorpe S; Bol S
    J Cell Physiol; 1979 Jul; 100(1):77-86. PubMed ID: 468921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human colony-forming units-erythroid do not require accessory cells, but do require direct interaction with insulin-like growth factor I and/or insulin for erythroid development.
    Sawada K; Krantz SB; Dessypris EN; Koury ST; Sawyer ST
    J Clin Invest; 1989 May; 83(5):1701-9. PubMed ID: 2651478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of rat megakaryocyte colony-forming cells using a monoclonal antibody against rat platelet glycoprotein IIb/IIIa.
    Miyazaki H; Inoue H; Yanagida M; Horie K; Mikayama T; Ohashi H; Nishikawa M; Suzuki T; Sudo T
    Exp Hematol; 1992 Aug; 20(7):855-61. PubMed ID: 1628703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thy-1 is a differentiation antigen that characterizes immature murine erythroid and myeloid hematopoietic progenitors.
    Miller BA; Lipton JM; Linch DC; Burakoff SJ; Nathan DG
    J Cell Physiol; 1985 Apr; 123(1):25-32. PubMed ID: 2857726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation and concentration of murine hematopoietic stem cells (CFUS) using a combination of density gradient sedimentation and counterflow centrifugal elutriation.
    Inoue T; Carsten AL; Cronkite EP; Kelley JE
    Exp Hematol; 1981 Jul; 9(6):563-72. PubMed ID: 6266852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of haemopoietic progenitor cells from patients with chronic granulocytic leukaemia using percoll density gradients and elutriation.
    Martin H; Hibbin JA; Dowding C; Matutes E; Tindle R; Goldman JM
    Br J Haematol; 1986 May; 63(1):187-98. PubMed ID: 3011059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of murine bone-marrow-derived granulocyte-macrophage colony-forming cells.
    Williams DE; Straneva JE; Shen RN; Broxmeyer HE
    Exp Hematol; 1987 Mar; 15(3):243-50. PubMed ID: 3817051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.