These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 6833998)

  • 1. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.
    Knauf PA; Law FY; Marchant PJ
    J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site.
    Fröhlich O; Leibson C; Gunn RB
    J Gen Physiol; 1983 Jan; 81(1):127-52. PubMed ID: 6833995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry.
    Knauf PA; Law FY; Tarshis T; Furuya W
    J Gen Physiol; 1984 May; 83(5):683-701. PubMed ID: 6736916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane.
    Knauf PA; Ship S; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):607-30. PubMed ID: 739255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system.
    Knauf PA; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):631-49. PubMed ID: 739256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB; Fröhlich O
    J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride/bicarbonate exchange in human erythrocytes.
    Lambert A; Lowe AG
    J Physiol; 1978 Feb; 275():51-63. PubMed ID: 633149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.
    Jones GS; Knauf PA
    J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein.
    Furuya W; Tarshis T; Law FY; Knauf PA
    J Gen Physiol; 1984 May; 83(5):657-81. PubMed ID: 6736915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO
    J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites.
    Grinstein S; McCulloch L; Rothstein A
    J Gen Physiol; 1979 Apr; 73(4):493-514. PubMed ID: 448327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titration of transport and modifier sites in the red cell anion transport system.
    Wieth JO; Bjerrum PJ
    J Gen Physiol; 1982 Feb; 79(2):253-82. PubMed ID: 6276496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport.
    Salhany JM; Sloan RL; Cordes KS
    Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of bromide, iodide, and fluoride with the pathways of chloride transport and diffusion in human neutrophils.
    Simchowitz L
    J Gen Physiol; 1988 Jun; 91(6):835-60. PubMed ID: 3047312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites?
    Milanick MA; Gunn RB
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent changes of chloride transport kinetics in human red cells.
    Brahm J
    J Gen Physiol; 1977 Sep; 70(3):283-306. PubMed ID: 19556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system.
    Knauf PA; Mann NA; Kalwas JE; Spinelli LJ; Ramjeesingh M
    Am J Physiol; 1987 Nov; 253(5 Pt 1):C652-61. PubMed ID: 3688213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange of HCO3- for monovalent anions across the human erythrocyte membrane.
    Obaid AL; Leininger TF; Crandall ED
    J Membr Biol; 1980; 52(2):173-9. PubMed ID: 6767850
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.