These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Evidence for cytochrome P-450 mediated metabolism in the bronchiolar damage by naphthalene. Warren DL; Brown DL; Buckpitt AR Chem Biol Interact; 1982 Jul; 40(3):287-303. PubMed ID: 7083396 [TBL] [Abstract][Full Text] [Related]
10. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the arachidonic acid and NADPH-dependent microsomal metabolism of naphthalene and 2-methylnaphthalene and the effect of indomethacin on the bronchiolar necrosis. Buckpitt AR; Bahnson LS; Franklin RB Biochem Pharmacol; 1986 Feb; 35(4):645-50. PubMed ID: 3081009 [TBL] [Abstract][Full Text] [Related]
12. Prevention of naphthalene-induced pulmonary toxicity by glutathione prodrugs: roles for glutathione depletion in adduct formation and cell injury. Phimister AJ; Nagasawa HT; Buckpitt AR; Plopper CG J Biochem Mol Toxicol; 2005; 19(1):42-51. PubMed ID: 15736154 [TBL] [Abstract][Full Text] [Related]
13. Renal toxicity due to reactive metabolites formed in situ in the kidney: investigations with 4-ipomeanol in the mouse. Boyd MR; Dutcher JS J Pharmacol Exp Ther; 1981 Mar; 216(3):640-6. PubMed ID: 7205642 [TBL] [Abstract][Full Text] [Related]
14. Phenytoin metabolic activation: role of cytochrome P-450, glutathione, age, and sex in rats and mice. Roy D; Snodgrass WR Res Commun Chem Pathol Pharmacol; 1988 Feb; 59(2):173-90. PubMed ID: 3358010 [TBL] [Abstract][Full Text] [Related]
15. Tolerance to multiple doses of the pulmonary toxicant, naphthalene. O'Brien KA; Suverkropp C; Kanekal S; Plopper CG; Buckpitt AR Toxicol Appl Pharmacol; 1989 Jul; 99(3):487-500. PubMed ID: 2749735 [TBL] [Abstract][Full Text] [Related]
16. Stereoselectivity of naphthalene epoxidation by mouse, rat, and hamster pulmonary, hepatic, and renal microsomal enzymes. Buckpitt AR; Castagnoli N; Nelson SD; Jones AD; Bahnson LS Drug Metab Dispos; 1987; 15(4):491-8. PubMed ID: 2888622 [TBL] [Abstract][Full Text] [Related]
17. Use of in vitro data for construction of a physiologically based pharmacokinetic model for naphthalene in rats and mice to probe species differences. Quick DJ; Shuler ML Biotechnol Prog; 1999; 15(3):540-55. PubMed ID: 10356275 [TBL] [Abstract][Full Text] [Related]
18. Covalent binding of procainamide in vitro and in vivo to hepatic protein in mice. Freeman RW; Uetrecht JP; Woosley RL; Oates JA; Harbison RD Drug Metab Dispos; 1981; 9(3):188-92. PubMed ID: 6166442 [TBL] [Abstract][Full Text] [Related]
19. Metabolic activation and bronchiolar Clara cell necrosis from naphthalene in the isolated perfused mouse lung. Kanekal S; Plopper C; Morin D; Buckpitt A J Pharmacol Exp Ther; 1990 Jan; 252(1):428-37. PubMed ID: 2299600 [TBL] [Abstract][Full Text] [Related]
20. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Buckpitt A; Chang AM; Weir A; Van Winkle L; Duan X; Philpot R; Plopper C Mol Pharmacol; 1995 Jan; 47(1):74-81. PubMed ID: 7838135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]