These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6834432)

  • 1. Thermodynamics and kinetics of co-operative protein-nucleic acid binding. I. General aspects of analysis of data.
    Schwarz G; Watanabe F
    J Mol Biol; 1983 Jan; 163(3):467-84. PubMed ID: 6834432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics and kinetics of co-operative protein-nucleic acid binding. II. Studies on the binding between protamine and calf thymus DNA.
    Watanabe F; Schwarz G
    J Mol Biol; 1983 Jan; 163(3):485-98. PubMed ID: 6834433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.
    Jarillo J; Morín JA; Beltrán-Heredia E; Villaluenga JP; Ibarra B; Cao FJ
    PLoS One; 2017; 12(4):e0174830. PubMed ID: 28380044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limited co-operativity in protein-nucleic acid interactions. A thermodynamic model for the interactions of Escherichia coli single strand binding protein with single-stranded nucleic acids in the "beaded", (SSB)65 mode.
    Bujalowski W; Lohman TM
    J Mol Biol; 1987 Jun; 195(4):897-907. PubMed ID: 3309344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of protein with a self-associating ligand. Deviation from a hyperbolic binding curve and the appearance of apparent co-operativity in the Scatchard plot.
    Ishida T; Horiike K; Tojo H; Nozaki M
    J Theor Biol; 1988 Jan; 130(1):49-66. PubMed ID: 3419173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of linear biopolymers induced by cooperative binding of ligands.
    Schwarz G; Seelig-Löffler A
    Biochim Biophys Acta; 1975 Jan; 379(1):125-38. PubMed ID: 1115791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative effects on binding of proteins to DNA.
    Nechipurenko YD; Gursky GV
    Biophys Chem; 1986 Aug; 24(3):195-209. PubMed ID: 3768466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of local linkage effects. Contracted partition functions and the analysis of site-specific energetics.
    Di Cera E
    Biophys Chem; 1990 Aug; 37(1-3):147-64. PubMed ID: 2285777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode.
    Ferrari ME; Bujalowski W; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):106-23. PubMed ID: 8107097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of ligand-nucleic acid interactions.
    Lohman TM; Mascotti DP
    Methods Enzymol; 1992; 212():400-24. PubMed ID: 1518457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic methods for model-independent determination of equilibrium binding isotherms for protein-DNA interactions: spectroscopic approaches to monitor binding.
    Lohman TM; Bujalowski W
    Methods Enzymol; 1991; 208():258-90. PubMed ID: 1779838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nature of protamine-DNA complexes. A special type of ligand binding co-operativity.
    Porschke D
    J Mol Biol; 1991 Nov; 222(2):423-33. PubMed ID: 1960734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Thermodynamic parameters characterizing interaction between ligand molecules adsorbed on a polymer].
    Nechipurenko IuD
    Biofizika; 1982; 27(3):391-8. PubMed ID: 7093318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the analysis of linear binding effects associated with curved Scatchard plots.
    Schwarz G
    Biophys Chem; 1976 Dec; 6(1):65-76. PubMed ID: 1016685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice.
    McGhee JD; von Hippel PH
    J Mol Biol; 1974 Jun; 86(2):469-89. PubMed ID: 4416620
    [No Abstract]   [Full Text] [Related]  

  • 16. Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A.
    Eftink MR; Anusiem AC; Biltonen RL
    Biochemistry; 1983 Aug; 22(16):3884-96. PubMed ID: 6615806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.
    Pethica BA
    Anal Biochem; 2015 Mar; 472():21-9. PubMed ID: 25484232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of protein-nucleic acid interactions: use of salt effects to probe mechanisms of interaction.
    Lohman TM
    CRC Crit Rev Biochem; 1986; 19(3):191-245. PubMed ID: 3512164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of kinetics by cooperative interactions.
    Hellmann N
    IUBMB Life; 2011 May; 63(5):329-36. PubMed ID: 21491560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters.
    Kowalczykowski SC; Paul LS; Lonberg N; Newport JW; McSwiggen JA; von Hippel PH
    Biochemistry; 1986 Mar; 25(6):1226-40. PubMed ID: 3486003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.