These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6834432)

  • 21. Thermodynamic model of cooperativity in a dimeric protein: unique and independent parameters formulation.
    Gutheil WG
    Biophys Chem; 1992 Dec; 45(2):181-91. PubMed ID: 1286151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general method of analysis of ligand binding to competing macromolecules using the spectroscopic signal originating from a reference macromolecule. Application to Escherichia coli replicative helicase DnaB protein nucleic acid interactions.
    Jezewska MJ; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2117-28. PubMed ID: 8652554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does the ligand-biopolymer equilibrium binding constant depend on the number of bound ligands?
    Beshnova DA; Lantushenko AO; Evstigneev MP
    Biopolymers; 2010 Nov; 93(11):932-5. PubMed ID: 20564521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measures of cooperativity in the binding of ligands to proteins and their relation to non-additivity in protein-protein interactions.
    Horovitz A
    Proc R Soc Lond B Biol Sci; 1986 Dec; 229(1256):315-29. PubMed ID: 2881305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimal models of multi-site ligand-binding kinetics.
    Juska A
    J Theor Biol; 2008 Dec; 255(4):396-403. PubMed ID: 18851980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free energy coupling within macromolecules. The chemical work of ligand binding at the individual sites in co-operative systems.
    Ackers GK; Shea MA; Smith FR
    J Mol Biol; 1983 Oct; 170(1):223-42. PubMed ID: 6631962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. I. Evidence and a quantitative model.
    Bujalowski W; Lohman TM
    J Mol Biol; 1989 May; 207(1):249-68. PubMed ID: 2661832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Consequences of the non-specific binding of a protein to a linear polymer: reconciliation of stoichiometric and equilibrium titration data for the thrombin-heparin interaction.
    Munro PD; Jackson CM; Winzor DJ
    J Theor Biol; 2000 Apr; 203(4):407-18. PubMed ID: 10736217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energetics of protein-DNA interactions: an exact calculation for binding of ligands to a lattice of overlapping sites.
    Saroff HA
    Biopolymers; 1995 Aug; 36(2):121-34. PubMed ID: 7492741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calculation of ligand-nucleic acid binding free energies with the generalized-born model in DOCK.
    Kang X; Shafer RH; Kuntz ID
    Biopolymers; 2004 Feb; 73(2):192-204. PubMed ID: 14755577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complexes of aliphatic sulfates and human-serum albumin studied by 13C nuclear-magnetic-resonance spectroscopy.
    Kragh-Hansen U; Riisom T
    Eur J Biochem; 1976 Nov; 70(1):15-23. PubMed ID: 1009924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-mediated protein-DNA interactions: the relationship of thermodynamics to structural detail.
    Morton CJ; Ladbury JE
    Protein Sci; 1996 Oct; 5(10):2115-8. PubMed ID: 8897612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selected-fit versus induced-fit protein binding: kinetic differences and mutational analysis.
    Weikl TR; von Deuster C
    Proteins; 2009 Apr; 75(1):104-10. PubMed ID: 18798570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.
    Deganutti G; Moro S
    Future Med Chem; 2017 Apr; 9(5):507-523. PubMed ID: 28362130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-operativity and the methods of plotting binding and steady-state kinetic data.
    Whitehead EP
    Biochem J; 1978 May; 171(2):501-4. PubMed ID: 656060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equilibrium and kinetic aspects of protein-DNA recognition.
    Livshitz MA; Gursky GV; Zasedatelev AS; Volkenstein MV
    Nucleic Acids Res; 1979; 6(6):2217-36. PubMed ID: 461187
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic mechanism of rat polymerase beta-dsDNA interactions. Fluorescence stopped-flow analysis of the cooperative ligand binding to a two-site one-dimensional lattice.
    Galletto R; Jezewska MJ; Bujalowski W
    Biochemistry; 2005 Feb; 44(4):1251-67. PubMed ID: 15667219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic databases for proteins and protein-nucleic acid interactions.
    Sarai A; Gromiha MM; An J; Prabakaran P; Selvaraj S; Kono H; Oobatake M; Uedaira H
    Biopolymers; 2001-2002; 61(2):121-6. PubMed ID: 11987161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.