BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6834433)

  • 1. Thermodynamics and kinetics of co-operative protein-nucleic acid binding. II. Studies on the binding between protamine and calf thymus DNA.
    Watanabe F; Schwarz G
    J Mol Biol; 1983 Jan; 163(3):485-98. PubMed ID: 6834433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of the fowl protamine, galline, and its binding properties to DNA.
    Nakano M; Kasai K; Yoshida K; Tanimoto T; Tamaki Y; Tobita T
    J Biochem; 1989 Jan; 105(1):133-7. PubMed ID: 2738040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding mode of a mammalian (boar) protamine to DNA.
    Tobita T; Tanimoto T; Nakano M
    Biochem Int; 1988 Jan; 16(1):163-73. PubMed ID: 3355572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of histone binding in calf thymus chromatin by protamine.
    Wong TK; Marushige K
    Biochemistry; 1975 Jan; 14(1):122-7. PubMed ID: 1167334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinvestigation of the binding of proflavine to DNA. Is intercalation the dominant binding effect?
    Schelhorn T; Kretz S; Zimmermann HW
    Cell Mol Biol; 1992 Jul; 38(4):345-65. PubMed ID: 1499037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylated protamines. I. Binding stoichiometry and thermal stability of complexes in DNA.
    Willmitzer L; Bode J; Wagner KG
    Nucleic Acids Res; 1977 Jan; 4(1):149-62. PubMed ID: 577308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and kinetics of co-operative protein-nucleic acid binding. I. General aspects of analysis of data.
    Schwarz G; Watanabe F
    J Mol Biol; 1983 Jan; 163(3):467-84. PubMed ID: 6834432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binding of protamines to DNA; role of protamine phosphorylation.
    Willmitzer L; Wagner KG
    Biophys Struct Mech; 1980; 6(2):95-110. PubMed ID: 7388127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative binding of fluorescein-labeled clupeine by DNA.
    Wehling K; Krauss S; Wagner KG
    Nucleic Acids Res; 1976 Jan; 3(1):149-64. PubMed ID: 1250694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative interaction of histone H1 with DNA.
    Watanabe F
    Nucleic Acids Res; 1986 Apr; 14(8):3573-85. PubMed ID: 2939395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature of protamine-DNA complexes. A special type of ligand binding co-operativity.
    Porschke D
    J Mol Biol; 1991 Nov; 222(2):423-33. PubMed ID: 1960734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions.
    Overman LB; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):165-78. PubMed ID: 8107102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Romanowsky dyes and the Romanowsky-Giemsa effect. 4. Binding of azure B to DNA].
    Müller-Walz R; Zimmermann HW
    Histochemistry; 1987; 87(2):157-22. PubMed ID: 2442126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode.
    Ferrari ME; Bujalowski W; Lohman TM
    J Mol Biol; 1994 Feb; 236(1):106-23. PubMed ID: 8107097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies.
    McAfee JG; Edmondson SP; Zegar I; Shriver JW
    Biochemistry; 1996 Apr; 35(13):4034-45. PubMed ID: 8672437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ensemble and single-molecule biophysical characterization of D17.4 DNA aptamer-IgE interactions.
    Poongavanam MV; Kisley L; Kourentzi K; Landes CF; Willson RC
    Biochim Biophys Acta; 2016 Jan; 1864(1):154-64. PubMed ID: 26307469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly salt-dependent enthalpy change for Escherichia coli SSB protein-nucleic acid binding due to ion-protein interactions.
    Lohman TM; Overman LB; Ferrari ME; Kozlov AG
    Biochemistry; 1996 Apr; 35(16):5272-9. PubMed ID: 8611514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.
    Jezewska MJ; Kim US; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.