These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6835397)

  • 1. Caulobacter flagellin mRNA segregates asymmetrically at cell division.
    Milhausen M; Agabian N
    Nature; 1983 Apr; 302(5909):630-2. PubMed ID: 6835397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of synthesis and positioning of a Caulobacter crescentus flagellar protein.
    Loewy ZG; Bryan RA; Reuter SH; Shapiro L
    Genes Dev; 1987 Aug; 1(6):626-35. PubMed ID: 3315855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes.
    Milhausen M; Gill PR; Parker G; Agabian N
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6847-51. PubMed ID: 6294658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of positional information during cell differentiation of Caulobacter.
    Gober JW; Champer R; Reuter S; Shapiro L
    Cell; 1991 Jan; 64(2):381-91. PubMed ID: 1988153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of spatial organization during cellular differentiation.
    Maddock J
    Cell Mol Biol Res; 1994; 40(3):199-205. PubMed ID: 7874196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of asymmetry during development. Segregation of type-specific proteins in Caulobacter.
    Agabian N; Evinger M; Parker G
    J Cell Biol; 1979 Apr; 81(1):123-36. PubMed ID: 479286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positional information during Caulobacter cell differentiation.
    Gober JW; Alley MR; Shapiro L
    Curr Opin Genet Dev; 1991 Oct; 1(3):324-9. PubMed ID: 1840888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of temporal control and trans-acting modulation of flagellin and chemotaxis genes in Caulobacter.
    Bryan R; Champer R; Gomes S; Ely B; Shapiro L
    Mol Gen Genet; 1987 Feb; 206(2):300-6. PubMed ID: 3473275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
    Mangan EK; Bartamian M; Gober JW
    J Bacteriol; 1995 Jun; 177(11):3176-84. PubMed ID: 7768816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the 25-, 27-, and 29-kilodalton flagellins in Caulobacter crescentus cell motility: method for construction of deletion and Tn5 insertion mutants by gene replacement.
    Minnich SA; Ohta N; Taylor N; Newton A
    J Bacteriol; 1988 Sep; 170(9):3953-60. PubMed ID: 2842293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell cycle arrest of a Caulobacter crescentus secA mutant.
    Kang PJ; Shapiro L
    J Bacteriol; 1994 Aug; 176(16):4958-65. PubMed ID: 8051008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus.
    Sommer JM; Newton A
    J Bacteriol; 1989 Jan; 171(1):392-401. PubMed ID: 2536661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoter mapping and cell cycle regulation of flagellin gene transcription in Caulobacter crescentus.
    Minnich SA; Newton A
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1142-6. PubMed ID: 3469658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of surface structures during procaryotic differentiation: role of cell division in Caulobacter crescentus.
    Huguenel ED; Newton A
    Differentiation; 1982; 21(2):71-8. PubMed ID: 7084571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of flagellin synthesis in the cell cycle of caulobacter: dependence on DNA replication.
    Osley MA; Sheffery M; Newton A
    Cell; 1977 Oct; 12(2):393-400. PubMed ID: 912749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator.
    Aldridge P; Jenal U
    Mol Microbiol; 1999 Apr; 32(2):379-91. PubMed ID: 10231493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative structural analysis of the flagellin monomers of Caulobacter crescentus indicates that these proteins are encoded by two genes.
    Gill PR; Agabian N
    J Bacteriol; 1982 May; 150(2):925-33. PubMed ID: 7068537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter.
    Quardokus E; Din N; Brun YV
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6314-9. PubMed ID: 8692812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positioning of gene products during Caulobacter cell differentiation.
    Shapiro L; Gober JW
    J Cell Sci Suppl; 1989; 11():85-97. PubMed ID: 2693463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and cell cycle-dependent expression of DNA replication gene dnaC from Caulobacter crescentus.
    Ohta N; Masurekar M; Newton A
    J Bacteriol; 1990 Dec; 172(12):7027-34. PubMed ID: 2174867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.