BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6835989)

  • 1. Influence of Z-Prolyl-D-Leucine on alpha-MPT-induced catecholamine utilization in specific mouse brain nuclei.
    Kovács GL; Acsai L; Tihanyi A; Faludi M; Telegdy G
    Pharmacol Biochem Behav; 1983 Mar; 18(3):345-9. PubMed ID: 6835989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catecholamine utilization in distinct mouse brain nuclei during acute morphine treatment, morphine tolerance and withdrawal syndrome.
    Kovács GL; Acsai L; Tihanyi A; Telegdy G
    Eur J Pharmacol; 1983 Sep; 93(3-4):149-58. PubMed ID: 6685650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drugs affecting brain dopamine interfere with the effect of Z-prolyl-D-leucine on morphine withdrawal.
    Kovács GL; Telegdy G; Hódi K
    Pharmacol Biochem Behav; 1984 Sep; 21(3):345-8. PubMed ID: 6541792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catecholamine utilization in specific rat brain nuclei after short-term hyperprolactinaemia.
    Kovács GL; Drago F; Acsai L; Tihanyi A; Scapagnini U; Telegdy G
    Brain Res; 1984 Dec; 324(1):29-34. PubMed ID: 6518390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of vasopressin with the nigro-striatal dopamine system: site and mechanism of action.
    van Heuven-Nolsen D; Versteeg DH
    Brain Res; 1985 Jul; 337(2):269-76. PubMed ID: 4027572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurochemical studies on central dopamine neurons--regional characterization of dopamine turnover.
    Hallman H; Jonsson G
    Med Biol; 1984; 62(3):198-209. PubMed ID: 6492900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of GBR 12909, a dopamine re-uptake inhibitor, on monoaminergic neurotransmission in rat striatum, limbic forebrain, cortical hemispheres and substantia nigra.
    Nissbrandt H; Engberg G; Pileblad E
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jul; 344(1):16-28. PubMed ID: 1663587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pro-Leu-GlyNH2 affects dopamine and noradrenaline utilization in rat limbic-forebrain nuclei.
    van Heuven-Nolsen D; de Kloet ER; Versteeg DH
    Brain Res; 1984 Nov; 322(2):213-8. PubMed ID: 6150749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmitter release from transplants of fetal ventral mesencephalon or locus coeruleus in the rat frontal cortex and nucleus accumbens: effects of pharmacological and behaviorally activating stimuli.
    Cenci MA; Kalén P; Duan WM; Björklund A
    Brain Res; 1994 Apr; 641(2):225-48. PubMed ID: 8012825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of des-Tyr1-gamma-endorphin and des-Tyr1-alpha-endorphin on alpha-MPT-induced catecholamine disappearance in rat brain nuclei: a dose--response study.
    Versteeg DH; Kovács GL; Bohus B; de Kloet ER; de Wied D
    Brain Res; 1982 Jan; 231(2):343-51. PubMed ID: 6120024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxytocin, des-glycinamide-oxytocin and anti-oxytocin serum on the alpha-MPT-induced disappearance of catecholamines in the rat brain.
    Kovács G; Telegdy G
    Brain Res; 1983 Jun; 268(2):307-14. PubMed ID: 6135495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical mapping of the noradrenergic ventral bundle projection sites: evidence for a noradrenergic--dopaminergic interaction.
    O'Donohue TL; Crowley WR; Jacobowitz DM
    Brain Res; 1979 Aug; 172(1):87-100. PubMed ID: 466469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex.
    Fallon JH; Koziell DA; Moore RY
    J Comp Neurol; 1978 Aug; 180(3):509-32. PubMed ID: 659673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats.
    Fujino K
    Acta Med Okayama; 1984 Aug; 38(4):325-40. PubMed ID: 6149670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of catecholamine uptake sites in human brain as determined by quantitative [3H] mazindol autoradiography.
    Donnan GA; Kaczmarczyk SJ; Paxinos G; Chilco PJ; Kalnins RM; Woodhouse DG; Mendelsohn FA
    J Comp Neurol; 1991 Feb; 304(3):419-34. PubMed ID: 2022757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxytocin and a C-terminal derivative (Z-prolyl-D-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain.
    Kovács GL; Horváth Z; Sarnyai Z; Faludi M; Telegdy G
    Neuropharmacology; 1985 May; 24(5):413-9. PubMed ID: 2991800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavioural and electrocortical changes induced by paraquat after injection in specific areas of the brain of the rat.
    De Gori N; Froio F; Strongoli MC; De Francesco A; Calò M; Nisticò G
    Neuropharmacology; 1988 Feb; 27(2):201-7. PubMed ID: 3352874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures.
    Kovács GL; Bohus B; Versteeg DH; de Kloet ER; de Wied D
    Brain Res; 1979 Oct; 175(2):303-14. PubMed ID: 487159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 6-hydroxydopamine-induced lesions to ascending and descending noradrenergic pathways on morphine analgesia.
    Sawynok J; Reid A
    Brain Res; 1987 Sep; 419(1-2):156-65. PubMed ID: 3119144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the effects of morphine on the alpha-methyl-p-tyrosine-induced depletion of dopamine and noradrenaline in various areas of the mouse brain.
    Martti L; Attila J; Etemadzadeh E; Ahtee L
    Pharmacol Toxicol; 1987 Jul; 61(1):26-32. PubMed ID: 3628178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.