These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6838163)

  • 1. Genetic components of variations of red cell glycolytic intermediates at two altitudes among the South American Aymara.
    Chakraborty R; Clench J; Ferrell RE; Barton SA; Schull WJ
    Ann Hum Biol; 1983; 10(2):173-84. PubMed ID: 6838163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic altitude hypoxia on hematologic and glycolytic parameters.
    Clench J; Ferrell RE; Schull WJ
    Am J Physiol; 1982 May; 242(5):R447-51. PubMed ID: 7081469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematocrit and hemoglobin, ATP and DPG concentrations in Andean man: the interaction of altitude and trace metals with glycolytic and hematologic parameters in man.
    Clench J; Ferrell RE; Schull WJ; Barton SA
    Prog Clin Biol Res; 1981; 55():747-66. PubMed ID: 7291204
    [No Abstract]   [Full Text] [Related]  

  • 4. Interactions between Hb, Mg, DPG, ATP, and Cl determine the change in Hb-O2 affinity at high altitude.
    Mairbäurl H; Oelz O; Bärtsch P
    J Appl Physiol (1985); 1993 Jan; 74(1):40-8. PubMed ID: 8444720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of high altitude on the glycolytic activity of erythrocytes in natives of the Andean Altiplano.
    Arnaud J; Gutiérrez N; Vergnes H
    Acta Physiol Lat Am; 1983; 33(1):7-14. PubMed ID: 6659976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human red cell glycolysis in high altitude chronic hypoxia.
    Arnaud J; Gutierrez N
    Am J Phys Anthropol; 1984 Mar; 63(3):307-14. PubMed ID: 6731602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Multinational Andean Genetic and Health Program. IX. Gene frequencies and rare variants of 20 serum proteins and erythrocyte enzymes in the Aymara of Chile.
    Ferrell RE; Bertin T; Barton SA; Rothhammer F; Schull WJ
    Am J Hum Genet; 1980 Jan; 32(1):92-102. PubMed ID: 7361767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in glycolytic intermediates in rat erythrocytes during exposure to simulated high altitude.
    Nakamura A; Osada H; Sakaguchi T; Sakurai I; Yagura S
    Aviat Space Environ Med; 1986 Mar; 57(3):256-62. PubMed ID: 3964154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,3-diphosphoglycerate in high- and low-altitude populations of the deer mouse.
    Snyder LR
    Respir Physiol; 1982 Apr; 48(1):107-23. PubMed ID: 7111916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neonatal variables, altitude of residence and Aymara ancestry in northern Chile.
    Rothhammer F; Fuentes-Guajardo M; Chakraborty R; Lorenzo Bermejo J; Dittmar M
    PLoS One; 2015; 10(4):e0121834. PubMed ID: 25885573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventilation and hypoxic ventilatory response of Tibetan and Aymara high altitude natives.
    Beall CM; Strohl KP; Blangero J; Williams-Blangero S; Almasy LA; Decker MJ; Worthman CM; Goldstein MC; Vargas E; Villena M; Soria R; Alarcon AM; Gonzales C
    Am J Phys Anthropol; 1997 Dec; 104(4):427-47. PubMed ID: 9453694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red cell function at extreme altitude on Mount Everest.
    Winslow RM; Samaja M; West JB
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jan; 56(1):109-16. PubMed ID: 6693310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Percent of oxygen saturation of arterial hemoglobin among Bolivian Aymara at 3,900-4,000 m.
    Beall CM; Almasy LA; Blangero J; Williams-Blangero S; Brittenham GM; Strohl KP; Decker MJ; Vargas E; Villena M; Soria R; Alarcon AM; Gonzales C
    Am J Phys Anthropol; 1999 Jan; 108(1):41-51. PubMed ID: 9915300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear growth in weight, stature, sitting height and leg length, and body proportions of Aymara school-children living in an hypoxic environment at high altitude in Chile.
    Dittmar M
    Z Morphol Anthropol; 1997; 81(3):333-44. PubMed ID: 9428192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrocortisone on the synthesis of 2,3-diphosphoglycerate in human erythrocytes.
    Oimomi M; Yoshimura Y; Kubota S; Tanke G; Takagi K; Baba S
    Transfusion; 1982; 22(4):266-8. PubMed ID: 7101418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multinational Andean genetic and health program: growth and development in an hypoxic environment.
    Mueller WH; Schull VN; Schull WJ; Soto P; Rothhammer F
    Ann Hum Biol; 1978 Jul; 5(4):329-52. PubMed ID: 686672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human red blood cell aging at 5,050-m altitude: a role during adaptation to hypoxia.
    Samaja M; Brenna L; Allibardi S; Cerretelli P
    J Appl Physiol (1985); 1993 Oct; 75(4):1696-701. PubMed ID: 8282622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red cell glycolytic intermediates and adenosine triphosphate in preterm infants on the first day of life.
    Travis SF; Kumar SP; Sacks LM; Gillmer P; Delivoria-Papadopoulos M
    Pediatr Res; 1985 Jan; 19(1):117-21. PubMed ID: 3969302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte 2,3-diphosphoglycerate and adenosine-triphosphate in cretins living at high altitude.
    Adams WH
    Acta Haematol; 1976; 56(1):14-8. PubMed ID: 822672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood oxygen affinity in high- and low-altitude populations of the deer mouse.
    Snyder LR; Born S; Lechner AJ
    Respir Physiol; 1982 Apr; 48(1):89-105. PubMed ID: 7111920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.