BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 6838506)

  • 1. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study.
    Hope MJ; Walker DC; Cullis PR
    Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions.
    Verkleij AJ; van Echteld CJ; Gerritsen WJ; Cullis PR; de Kruijff B
    Biochim Biophys Acta; 1980 Aug; 600(3):620-4. PubMed ID: 7407134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)phosphatidylethanolamine in the study of lipid polymorphism.
    Stubbs CD; Williams BW; Boni LT; Hoek JB; Taraschi TF; Rubin E
    Biochim Biophys Acta; 1989 Nov; 986(1):89-96. PubMed ID: 2819099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP
    Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane contact, fusion, and hexagonal (HII) transitions in phosphatidylethanolamine liposomes.
    Allen TM; Hong K; Papahadjopoulos D
    Biochemistry; 1990 Mar; 29(12):2976-85. PubMed ID: 2337577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The polymorphic phase behaviour of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR.
    Tilcock CP; Cullis PR
    Biochim Biophys Acta; 1981 Feb; 641(1):189-201. PubMed ID: 7194114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes.
    Düzgüneş N; Straubinger RM; Baldwin PA; Friend DS; Papahadjopoulos D
    Biochemistry; 1985 Jun; 24(13):3091-8. PubMed ID: 4027231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study.
    Wenk MR; Seelig J
    Biochim Biophys Acta; 1998 Jul; 1372(2):227-36. PubMed ID: 9675291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations.
    Ortiz A; Killian JA; Verkleij AJ; Wilschut J
    Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion.
    Bearer EL; Düzgünes N; Friend DS; Papahadjopoulos D
    Biochim Biophys Acta; 1982 Dec; 693(1):93-8. PubMed ID: 7150597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-succinyldioleoylphosphatidylethanolamine: structural preferences in pure and mixed model membranes.
    Nayar R; Tilcock CP; Hope MJ; Cullis PR; Schroit AJ
    Biochim Biophys Acta; 1988 Jan; 937(1):31-41. PubMed ID: 3334845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vesiculation of unsonicated phospholipid dispersions containing phosphatidic acid by pH adjustment: physicochemical properties of the resulting unilamellar vesicles.
    Hauser H; Gains N; Müller M
    Biochemistry; 1983 Sep; 22(20):4775-81. PubMed ID: 6626532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesteryl hemisuccinate.
    Lai MZ; Vail WJ; Szoka FC
    Biochemistry; 1985 Mar; 24(7):1654-61. PubMed ID: 4005220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transbilayer redistribution of phosphatidylethanolamine during fusion of phospholipid vesicles. Dependence on fusion rate, lipid phase separation, and formation of nonbilayer structures.
    Hoekstra D; Martin OC
    Biochemistry; 1982 Nov; 21(24):6097-103. PubMed ID: 7150546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes.
    Nicolay K; van der Neut R; Fok JJ; de Kruijff B
    Biochim Biophys Acta; 1985 Sep; 819(1):55-65. PubMed ID: 4041451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin.
    De Kruijff B; Verkleij AJ; Leunissen-Bijvelt J; Van Echteld CJ; Hille J; Rijnbout H
    Biochim Biophys Acta; 1982 Dec; 693(1):1-12. PubMed ID: 7150583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2+ and Mg2+.
    Nayar R; Schmid SL; Hope MJ; Cullis PR
    Biochim Biophys Acta; 1982 May; 688(1):169-76. PubMed ID: 7093273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study.
    Van Venetie R; Verkleij AJ
    Biochim Biophys Acta; 1981 Jul; 645(2):262-9. PubMed ID: 7272289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.