These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6838595)

  • 1. Plasmid involvement in the degradation of polycyclic aromatic hydrocarbons by a Beijerinckia species.
    Kiyohara H; Sugiyama M; Mondello FJ; Gibson DT; Yano K
    Biochem Biophys Res Commun; 1983 Mar; 111(3):939-45. PubMed ID: 6838595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bacteria--degraders of polycyclic aromatic hydrocarbons, isolated from soil and bottom sediments in salt-mining areas].
    Plotnikova EG; Altyntseva OV; Kosheleva IA; Puntus IF; Filonov AE; Gavrish EIu; Demakov VA; Boronin AM
    Mikrobiologiia; 2001; 70(1):61-9. PubMed ID: 11338839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5.
    Liu Y; Zhang J; Zhang Z
    Biodegradation; 2004 Jun; 15(3):205-12. PubMed ID: 15228078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a dissimilatory plasmid in Azotobacter chroococcum.
    Balajee S; Mahadevan A
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):223-7. PubMed ID: 2612888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of polycyclic aromatic hydrocarbons degradative soil Pseudomonas.
    Fuenmayor SL; Rodriguez Lemoine V
    Acta Cient Venez; 1992; 43(6):349-54. PubMed ID: 1343746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species.
    Foght JM; Westlake DW
    Can J Microbiol; 1988 Oct; 34(10):1135-41. PubMed ID: 3196963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery.
    Ashok BT; Saxena S; Musarrat J
    Lett Appl Microbiol; 1995 Oct; 21(4):246-8. PubMed ID: 7576515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of dissolution rate and solubility in biodegradation of aromatic compounds.
    Stucki G; Alexander M
    Appl Environ Microbiol; 1987 Feb; 53(2):292-7. PubMed ID: 3566268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Physiologo-biochemical properties of a strain of Beijerinckia mobilis 1phi Phn+--a degrader of polycyclic aromatic hydrocarbons].
    Surovtseva EG; Ivoĭlov VS; Beliaev SS
    Mikrobiologiia; 1999; 68(6):845-50. PubMed ID: 10734634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1.
    Kim E; Zylstra GJ
    J Bacteriol; 1995 Jun; 177(11):3095-103. PubMed ID: 7768806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structural and functional variability of genetic systems for catabolizing polycyclic aromatic hydrocarbons in Pseudomonas putida strains].
    Kosheleva IA; Izmalkova TIu; Sokolov SL; Sazonova OI; Boronin AM
    Genetika; 2003 Sep; 39(9):1185-92. PubMed ID: 14582387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3.
    Tittabutr P; Cho IK; Li QX
    Biodegradation; 2011 Nov; 22(6):1119-33. PubMed ID: 21369832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbial breakdown of polycyclic aromatic hydrocarbons (author's transl)].
    Groenewegen D; Stolp H
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):225-32. PubMed ID: 998053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations].
    Anokhina TO; Kochetkov VV; Zelenkova NF; Balakshina VV; Boronin AM
    Prikl Biokhim Mikrobiol; 2004; 40(6):654-8. PubMed ID: 15609856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Use of Pseudomonas and Achromobacter species bacteria--degraders of surface-active agents--for detection and destruction of polycyclic aromatic hydrocarbons].
    Ivashchenko GV; Semenchuk IN
    Ukr Biokhim Zh (1999); 2001; 73(1):148-52. PubMed ID: 11599420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of mega plasmid from polycyclic aromatic hydrocarbon-degrading Sphingomonas sp. strain KS14.
    Cho JC; Kim SJ
    J Mol Microbiol Biotechnol; 2001 Oct; 3(4):503-6. PubMed ID: 11545268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for plasmid mediated dissimilation of catechol in Azotobacter chroococcum.
    Balajee S; Mahadevan A
    Indian J Exp Biol; 1990 Nov; 28(11):1082-3. PubMed ID: 2283176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi.
    Hammel KE
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):41-3. PubMed ID: 8565908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene.
    Schocken MJ; Gibson DT
    Appl Environ Microbiol; 1984 Jul; 48(1):10-6. PubMed ID: 6089663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons.
    Aitken MD; Stringfellow WT; Nagel RD; Kazunga C; Chen SH
    Can J Microbiol; 1998 Aug; 44(8):743-52. PubMed ID: 9830104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.