These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6838727)

  • 21. Neural control of the jaw and ingestive behavior. Anatomical and behavioral studies of a trigeminal sensorimotor circuit.
    Zeigler HP
    Ann N Y Acad Sci; 1989; 563():69-86. PubMed ID: 2774412
    [No Abstract]   [Full Text] [Related]  

  • 22. The neural regulation of tongue movements.
    Lowe AA
    Prog Neurobiol; 1980; 15(4):295-344. PubMed ID: 7244250
    [No Abstract]   [Full Text] [Related]  

  • 23. Deafferentation does not disrupt natural rules of action syntax.
    Berridge KC; Fentress JC
    Behav Brain Res; 1987 Jan; 23(1):69-76. PubMed ID: 3828047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of damage of the l-XII nerve that innervates tongue retractive muscles in rats.
    Miyaoka Y; Ashida I
    J Oral Rehabil; 2009 Sep; 36(9):675-81. PubMed ID: 19703240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of jaw-opening and trigemino-hypoglossal reflexes during swallowing in the cat.
    Ono T; Ishiwata Y; Kuroda T; Nakamura Y
    J Dent Res; 1999 Nov; 78(11):1720-6. PubMed ID: 10576168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature.
    Halkjaer L; Melsen B; McMillan AS; Svensson P
    Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons.
    Luo P; Zhang J; Yang R; Pendlebury W
    Eur J Neurosci; 2006 Jun; 23(12):3269-83. PubMed ID: 16820017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.
    Nakamura Y; Katakura N; Nakajima M
    J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contextual control of trigeminal sensorimotor function.
    Berridge KC; Fentress JC
    J Neurosci; 1986 Feb; 6(2):325-30. PubMed ID: 3950700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neonatal infraorbital nerve damage and the development of eating behavior in the rat.
    Klein BG; Duffin JR; Kraje B
    Behav Brain Res; 1994 Jan; 60(1):25-33. PubMed ID: 8185849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reflexes elicited from cutaneous and mucosal trigeminal afferents in normal human subjects.
    Maisonobe T; Tankéré F; Lamas G; Soudant J; Bouche P; Willer JC; Fournier E
    Brain Res; 1998 Nov; 810(1-2):220-8. PubMed ID: 9813339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trigeminal denervation and operant behavior in the rat.
    Jacquin MF; Zeigler HP
    Behav Neurosci; 1984 Dec; 98(6):1004-22. PubMed ID: 6508908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extratelencephalic pathways and feeding behavior in the pigeon (Columba livia).
    Levine RR; Zeigler HP
    Brain Behav Evol; 1981; 19(1-2):56-92. PubMed ID: 7326570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. II. Effects of combined chorda tympani and glossopharyngeal nerve section in the rat.
    Grill HJ; Schwartz GJ
    Brain Res; 1992 Feb; 573(1):105-13. PubMed ID: 1576527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. I. Effects of chorda tympani or glossopharyngeal nerve section in the rat.
    Grill HJ; Schwartz GJ; Travers JB
    Brain Res; 1992 Feb; 573(1):95-104. PubMed ID: 1576537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of taste in dietary self-selection in rats.
    Miller MG; Teates JF
    Behav Neurosci; 1986 Jun; 100(3):399-409. PubMed ID: 3730148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aphagia, behavior sequencing and body weight set point following orbital frontal lesions in rats.
    Kolb B; Whishaw IQ; Schallert T
    Physiol Behav; 1977 Jul; 19(1):93-103. PubMed ID: 11803698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypoglossal neural activity during ingestion and rejection in the awake rat.
    Dinardo LA; Travers JB
    J Neurophysiol; 1994 Sep; 72(3):1181-91. PubMed ID: 7807203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation, individual variation and the role of lingual sensory afferents in the control of prey transport in the lizard Pogona vitticeps.
    Schaerlaeken V; Herrel A; Meyers JJ
    J Exp Biol; 2008 Jul; 211(Pt 13):2071-8. PubMed ID: 18552296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trigeminal-taste interaction in palatability processing.
    Berridge KC; Fentress JC
    Science; 1985 May; 228(4700):747-50. PubMed ID: 3992242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.