These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6838836)

  • 1. Structural analysis of short-chain lecithin/triglyceride micellar particles.
    Burns RA; Donovan JM; Roberts MF
    Biochemistry; 1983 Feb; 22(4):964-73. PubMed ID: 6838836
    [No Abstract]   [Full Text] [Related]  

  • 2. Physical characterization and lipase susceptibility of short chain lecithin/triglyceride mixed micelles. Potential lipoprotein models.
    Burns RA; Roberts MF
    J Biol Chem; 1981 Mar; 256(6):2716-22. PubMed ID: 7204372
    [No Abstract]   [Full Text] [Related]  

  • 3. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions.
    Mazer NA; Benedek GB; Carey MC
    Biochemistry; 1980 Feb; 19(4):601-15. PubMed ID: 7356951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural aspects of bile salt-lecithin mixed micelles.
    Müller K
    Hepatology; 1984; 4(5 Suppl):134S-137S. PubMed ID: 6090294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical chemical studies of short-chain lecithin homologues. II. Micellar weights of dihexanoyl- and diheptanoyllecithin.
    Tausk RJ; van Esch J; Karmiggelt J; Voordouw G; Overbeek JT
    Biophys Chem; 1974 Feb; 1(3):184-203. PubMed ID: 4425723
    [No Abstract]   [Full Text] [Related]  

  • 6. Carbon-13 nuclear magnetic resonance studies of short-chain lecithins. Motional and conformational characteristics of micellar and monomeric phospholipid.
    Burns RA; Roberts MF
    Biochemistry; 1980 Jun; 19(13):3100-6. PubMed ID: 6893160
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural investigations on lipid nanoparticles containing high amounts of lecithin.
    Schubert MA; Harms M; Müller-Goymann CC
    Eur J Pharm Sci; 2006 Feb; 27(2-3):226-36. PubMed ID: 16298113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol solubilization by short-chain lecithins: characterization of mixed micelles and cholesterol oxidase activity.
    Burns RA; Roberts MF
    Biochemistry; 1981 Dec; 20(25):7102-8. PubMed ID: 6947824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis.
    Müller K
    Biochemistry; 1981 Jan; 20(2):404-14. PubMed ID: 7470489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimorphism in bile salt/lecithin mixed micelles.
    Claffey WJ; Holzbach RT
    Biochemistry; 1981 Jan; 20(2):415-8. PubMed ID: 7470490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Size, structure, and dynamics of bile salt/lecithin mixed micelles (author's transl)].
    Gähwiller C; von Planta C; Schmidt D; Steffen H
    Z Naturforsch C Biosci; 1977; 32(9-10):748-55. PubMed ID: 201116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic model for micelle formation by phosphatidylcholines containing short-chain fatty acids. Correlations with physical-chemical data and the effects of concentration on the activity of phospholipase A2.
    Allgyer TT; Wells MA
    Biochemistry; 1979 Oct; 18(20):4354-61. PubMed ID: 486427
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously.
    Gabriel NE; Roberts MF
    Biochemistry; 1986 May; 25(10):2812-21. PubMed ID: 3718923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lamellar--micellar transition of 1-stearoyllysophosphatidylcholine assemblies in excess water.
    Wu W; Huang C; Conley TG; Martin RB; Levin IW
    Biochemistry; 1982 Nov; 21(23):5957-61. PubMed ID: 7150539
    [No Abstract]   [Full Text] [Related]  

  • 15. One- and two-dimensional NMR relaxation studies of dynamics and structure in bile salt-phosphatidylcholine mixed micelles.
    Stark RE; Storrs RW; Levine SE; Yee S; Broido MS
    Biochim Biophys Acta; 1986 Aug; 860(2):399-410. PubMed ID: 3741858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles.
    Almog S; Kushnir T; Nir S; Lichtenberg D
    Biochemistry; 1986 May; 25(9):2597-605. PubMed ID: 3718967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl branching in short-chain lecithins: are both chains important for effective phospholipase A2 activity?
    DeBose CD; Burns RA; Donovan JM; Roberts MF
    Biochemistry; 1985 Mar; 24(6):1298-306. PubMed ID: 3986178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of liposomes by tetracaine micelles.
    Fernández MS
    Biochim Biophys Acta; 1981 Aug; 646(1):27-30. PubMed ID: 7272301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taurocholate- and taurochenodeoxycholate-lecithin micelles: the equilibrium of bile salt between aqueous phase and micelle.
    Duane WC
    Biochem Biophys Res Commun; 1977 Jan; 74(1):223-9. PubMed ID: 836281
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of short-chain alkyl ether lecithin analogues: 13C NMR and phospholipase studies.
    Burns RA; Friedman JM; Roberts MF
    Biochemistry; 1981 Oct; 20(21):5945-50. PubMed ID: 7306484
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.