These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Formation of "solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. White SH Biophys J; 1978 Sep; 23(3):337-47. PubMed ID: 698340 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of carrier-mediated ion transport in two new types of solvent-free lipid bilayers. Lapointe JY; Laprade R Biophys J; 1982 Aug; 39(2):141-50. PubMed ID: 6896832 [TBL] [Abstract][Full Text] [Related]
6. Tensions and free energies of formation of "solventless" lipid bilayers. Measurement of high contact angles. Needham D; Haydon DA Biophys J; 1983 Mar; 41(3):251-7. PubMed ID: 6838967 [TBL] [Abstract][Full Text] [Related]
7. Planar bilayer membranes from pure lipids. Waldbillig RC; Szabo G Biochim Biophys Acta; 1979 Nov; 557(2):295-305. PubMed ID: 497184 [TBL] [Abstract][Full Text] [Related]
8. [Comparison of the kinetics of ionophore-induced ion transport in conventional and solventless membranes]. Laprade R; Lapointe JY Rev Can Biol Exp; 1982 Mar; 41(1):13-22. PubMed ID: 7201660 [TBL] [Abstract][Full Text] [Related]
9. Photon correlation spectroscopy as a probe of planar lipid bilayer phase transitions. Crawford GE; Earnshaw JC Eur Biophys J; 1984; 11(1):25-33. PubMed ID: 6468342 [TBL] [Abstract][Full Text] [Related]
10. Cholesterol-induced effects on the viscoelasticity of monoglyceride bilayers. Crilly JF; Earnshaw JC Biophys J; 1983 Feb; 41(2):211-6. PubMed ID: 6838963 [TBL] [Abstract][Full Text] [Related]
11. Phase transitions in planar bilayer membranes. White SH Biophys J; 1975 Feb; 15(2 Pt 1):95-117. PubMed ID: 1111634 [TBL] [Abstract][Full Text] [Related]
12. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. McIntosh TJ; Kulkarni KG; Simon SA Biophys J; 1999 Apr; 76(4):2090-8. PubMed ID: 10096904 [TBL] [Abstract][Full Text] [Related]
13. [Effect of bilayer lipid membrane thickness, composition, and tension on gramicidin channel parameters]. Rudnev VS; Ermishkin LN; Rovin IuG Biofizika; 1980; 25(5):857-8. PubMed ID: 6158349 [TBL] [Abstract][Full Text] [Related]
14. The thickness of monoolein lipid bilayers as determined from reflectance measurements. Dilger JP Biochim Biophys Acta; 1981 Jul; 645(2):357-63. PubMed ID: 7272294 [TBL] [Abstract][Full Text] [Related]
16. The interaction of n-octanol with black lipid bilayer membranes. Elliott JR; Haydon DA Biochim Biophys Acta; 1979 Oct; 557(1):259-63. PubMed ID: 549641 [TBL] [Abstract][Full Text] [Related]
17. Glyceryl monooleate black lipid membranes obtained from squalene solutions. Bach D; Miller IR Biophys J; 1980 Jan; 29(1):183-7. PubMed ID: 7053057 [No Abstract] [Full Text] [Related]
18. Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Hauss T; Dante S; Dencher NA; Haines TH Biochim Biophys Acta; 2002 Dec; 1556(2-3):149-54. PubMed ID: 12460672 [TBL] [Abstract][Full Text] [Related]
19. Optical and electrical properties of thin monoolein lipid bilayers. Dilger JP; Benz R J Membr Biol; 1985; 85(2):181-9. PubMed ID: 4009697 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive analysis of compositional interface fluctuations in planar lipid bilayer membranes. Han T; Haataja M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051903. PubMed ID: 22181440 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]