BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6838988)

  • 1. A simplified approach to resonance energy transfer in membranes, lipoproteins and spatially restricted systems.
    Doody MC; Sklar LA; Pownall HJ; Sparrow JT; Gotto AM; Smith LC
    Biophys Chem; 1983 Mar; 17(2):139-52. PubMed ID: 6838988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of resonance energy transfer in model membranes: role of orientational effects.
    Domanov YA; Gorbenko GP
    Biophys Chem; 2002 Oct; 99(2):143-54. PubMed ID: 12377365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study.
    Gorbenko GP; Domanov YA
    Biophys Chem; 2003 Mar; 103(3):239-49. PubMed ID: 12727286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the 22-NBD-cholesterol transfer between liposome membranes and its relation to the intermembrane exchange of 25-hydroxycholesterol.
    Ishii H; Shimanouchi T; Umakoshi H; Walde P; Kuboi R
    Colloids Surf B Biointerfaces; 2010 May; 77(1):117-21. PubMed ID: 20122819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance energy transfer study of hemoglobin complexes with model phospholipid membranes.
    Gorbenko GP
    Biophys Chem; 1999 Oct; 81(2):93-105. PubMed ID: 10515045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer.
    Davenport L; Dale RE; Bisby RH; Cundall RB
    Biochemistry; 1985 Jul; 24(15):4097-108. PubMed ID: 3931673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of resonance energy transfer in crowded biological membranes.
    Zimet DB; Thevenin BJ; Verkman AS; Shohet SB; Abney JR
    Biophys J; 1995 Apr; 68(4):1592-603. PubMed ID: 7787045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer in artificial membrane systems. Singlet-singlet energy transfer from alloxazines to isolloxazines in dipamitoyl phosphatidylcholine liposomes and dialkylammonium chloride vesicles.
    Aso Y; Kano K; Matsuo T
    Biochim Biophys Acta; 1980 Jul; 599(2):403-16. PubMed ID: 6893280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermembrane transfer and antioxidant action of alpha-tocopherol in liposomes.
    Kagan VE; Bakalova RA; Zhelev ZZ; Rangelova DS; Serbinova EA; Tyurin VA; Denisova NK; Packer L
    Arch Biochem Biophys; 1990 Jul; 280(1):147-52. PubMed ID: 2353816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of fluorescent probes localization in membranes by nonradiative energy transfer.
    Dobretsov GE; Kurek NK; Machov VN; Syrejshchikova TI; Yakimenko MN
    J Biochem Biophys Methods; 1989 Oct; 19(4):259-74. PubMed ID: 2614002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of human plasma high-density lipoprotein HDL2b with discoidal complexes of dimyristoylphosphatidylcholine and apolipoprotein A-I.
    Nichols AV; Gong EL; Blanche PJ; Forte TM
    Biochim Biophys Acta; 1980 Mar; 617(3):480-8. PubMed ID: 6768395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in geometric parameters of liposomes and plasma lipoproteins during enrichment with cholesterol].
    Voziian PA
    Ukr Biokhim Zh (1978); 1988; 60(5):81-4. PubMed ID: 3206570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of cationic liposomes with cell membrane models.
    Bonicelli MG; Giansanti L; Ierino M; Mancini G
    J Colloid Interface Sci; 2011 Mar; 355(1):1-8. PubMed ID: 21190699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spatial structure of lipids in human leukocytes: studies by nonradiative energy transfer.
    Gularian SK; Dobretsov GE; Kurek NK; Svetlichny VY
    Membr Cell Biol; 1997; 10(6):639-48. PubMed ID: 9231362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the transbilayer distribution of fluorescent lipid analogues by nonradiative fluorescence resonance energy transfer.
    Wolf DE; Winiski AP; Ting AE; Bocian KM; Pagano RE
    Biochemistry; 1992 Mar; 31(11):2865-73. PubMed ID: 1550813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid mixing during freeze-thawing of liposomal membranes as monitored by fluorescence energy transfer.
    MacDonald RI; MacDonald RC
    Biochim Biophys Acta; 1983 Nov; 735(2):243-51. PubMed ID: 6688739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations.
    Pagano RE; Martin OC; Schroit AJ; Struck DK
    Biochemistry; 1981 Aug; 20(17):4920-7. PubMed ID: 7295659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS; Soto MA; Bonini de Romanelli I; GutiƩrrez-Merino C; Sotomayor P; Barrantes FJ
    Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.