BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6839190)

  • 1. Correlated physiochemical and age changes in embryonic bovine enamel.
    Landis WJ; Navarro M
    Calcif Tissue Int; 1983; 35(1):48-55. PubMed ID: 6839190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single bovine enamel particles examined by electron optics.
    Landis WJ; Navarro M; Neuringer JR; Kurz K
    J Dent Res; 1984 May; 63(5):629-34. PubMed ID: 6584464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and composition studies on the mineral of newly formed dental enamel: a chemical, x-ray diffraction, and 31P and proton nuclear magnetic resonance study.
    Bonar LC; Shimizu M; Roberts JE; Griffin RG; Glimcher MJ
    J Bone Miner Res; 1991 Nov; 6(11):1167-76. PubMed ID: 1666806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies of the mineral phase of calcifying cartilage.
    Rey C; Beshah K; Griffin R; Glimcher MJ
    J Bone Miner Res; 1991 May; 6(5):515-25. PubMed ID: 2068959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.
    Zamudio-Ortega CM; Contreras-Bulnes R; Scougall-Vilchis RJ; Morales-Luckie RA; Olea-Mejía OF; Rodríguez-Vilchis LE
    Eur J Paediatr Dent; 2014 Sep; 15(3):275-80. PubMed ID: 25306144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 30 % hydrogen peroxide on mineral chemical composition and surface morphology of bovine enamel.
    González-López S; Torres-Rodríguez C; Bolaños-Carmona V; Sanchez-Sanchez P; Rodríguez-Navarro A; Álvarez-Lloret P; Domingo Garcia M
    Odontology; 2016 Jan; 104(1):44-52. PubMed ID: 25528151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth.
    Ortiz-Ruiz AJ; Teruel-Fernández JD; Alcolea-Rubio LA; Hernández-Fernández A; Martínez-Beneyto Y; Gispert-Guirado F
    Ann Anat; 2018 Jul; 218():7-17. PubMed ID: 29604387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mineralization mechanism and crystal chemistry in developing enamel].
    Ogasawara T
    Kokubyo Gakkai Zasshi; 1997 Mar; 64(1):133-44. PubMed ID: 9125855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I: Investigations in the upsilon 4 PO4 domain.
    Rey C; Shimizu M; Collins B; Glimcher MJ
    Calcif Tissue Int; 1990 Jun; 46(6):384-94. PubMed ID: 2364326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some physico-chemical properties of deciduous enamel of children with and without pre-natal fluoride supplementation (PNF).
    LeGeros RZ; Glenn FB; Lee DD; Glenn WD
    J Dent Res; 1985 Mar; 64(3):465-9. PubMed ID: 3855900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH and carbonate levels in developing enamel.
    Takagi T; Ogasawara T; Tagami J; Akao M; Kuboki Y; Nagai N; LeGeros RZ
    Connect Tissue Res; 1998; 38(1-4):181-7; discussion 201-5. PubMed ID: 11063026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonate content in developing human and bovine enamel.
    Sydney-Zax M; Mayer I; Deutsch D
    J Dent Res; 1991 May; 70(5):913-6. PubMed ID: 2022774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy-dispersive X-ray microanalysis and scanning electron microscopy of developing and mature cat enamel.
    Sasaki T; Debari K; Higashi S
    Arch Oral Biol; 1984; 29(6):431-6. PubMed ID: 6589985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineral densities and elemental content in different layers of healthy human enamel with varying teeth age.
    He B; Huang S; Zhang C; Jing J; Hao Y; Xiao L; Zhou X
    Arch Oral Biol; 2011 Oct; 56(10):997-1004. PubMed ID: 21411061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysical analyses of sequential bands of enamel related to ruffle-ended and smooth-ended maturation ameloblasts.
    McKee MD; Martin JR; Landis WJ
    J Dent Res; 1989 Feb; 68(2):101-6. PubMed ID: 2918130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and microstructure of hypomineralised enamel of permanent teeth.
    Mahoney EK; Rohanizadeh R; Ismail FS; Kilpatrick NM; Swain MV
    Biomaterials; 2004 Sep; 25(20):5091-100. PubMed ID: 15109872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetics of dissolution of tooth enamel--a constant composition study.
    Chen WC; Nancollas GH
    J Dent Res; 1986 May; 65(5):663-8. PubMed ID: 3009579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro uptake of fluoride by secretory and maturation stage bovine enamel.
    Fridell RA; Lussi A; Crenshaw MA; Bawden JW
    J Dent Res; 1988 Feb; 67(2):487-90. PubMed ID: 11039063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystallographic properties of the mineral phases of enamel and dentin in normal deciduous and permanent teeth.
    Zhao W; Wang S; Hong H; Chen Z; Fan M; Yu S
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2002 May; 37(3):219-21. PubMed ID: 12419150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.