These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 6839580)

  • 1. Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences.
    Winter DA
    Clin Orthop Relat Res; 1983 May; (175):147-54. PubMed ID: 6839580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cadence on energy generation and absorption at lower extremity joints during gait.
    Teixeira-Salmela LF; Nadeau S; Milot MH; Gravel D; Requião LF
    Clin Biomech (Bristol); 2008 Jul; 23(6):769-78. PubMed ID: 18384921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body size and walking cadence affect lower extremity joint power in children's gait.
    Shultz SP; Hills AP; Sitler MR; Hillstrom HJ
    Gait Posture; 2010 Jun; 32(2):248-52. PubMed ID: 20570152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory gait mechanics in patients with unilateral knee arthritis.
    McGibbon CA; Krebs DE
    J Rheumatol; 2002 Nov; 29(11):2410-9. PubMed ID: 12415602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle.
    Begg RK; Sparrow WA
    J Med Eng Technol; 2006; 30(6):382-9. PubMed ID: 17060166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanics of running: a kinematic and kinetic analysis.
    Ounpuu S
    Instr Course Lect; 1990; 39():305-18. PubMed ID: 2335745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis.
    Watelain E; Dujardin F; Babier F; Dubois D; Allard P
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new look at an old problem: defining weight acceptance in human walking.
    Worthen-Chaudhari L; Bing J; Schmiedeler JP; Basso DM
    Gait Posture; 2014; 39(1):588-92. PubMed ID: 24139684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of unilateral knee immobilization on lower extremity gait mechanics.
    Lage KJ; White SC; Yack HJ
    Med Sci Sports Exerc; 1995 Jan; 27(1):8-14. PubMed ID: 7898343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to detecting asymmetries in gait.
    Shorter KA; Polk JD; Rosengren KS; Hsiao-Wecksler ET
    Clin Biomech (Bristol); 2008 May; 23(4):459-67. PubMed ID: 18242805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of level of effort at the plantarflexors and hip extensors and flexor muscles in healthy subjects walking at different cadences.
    Requião LF; Nadeau S; Milot MH; Gravel D; Bourbonnais D; Gagnon D
    J Electromyogr Kinesiol; 2005 Aug; 15(4):393-405. PubMed ID: 15811610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the toe-only rocker on gait kinematics and kinetics in able-bodied persons.
    Van Bogart JJ; Long JT; Klein JP; Wertsch JJ; Janisse DJ; Harris GF
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):542-50. PubMed ID: 16425836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical treatment of knee dysfunction in cerebral palsy.
    Gage JR
    Clin Orthop Relat Res; 1990 Apr; (253):45-54. PubMed ID: 2317990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging modifies joint power and work when gait speeds are matched.
    Cofré LE; Lythgo N; Morgan D; Galea MP
    Gait Posture; 2011 Mar; 33(3):484-9. PubMed ID: 21256026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor strategies in obese and non-obese children.
    Nantel J; Brochu M; Prince F
    Obesity (Silver Spring); 2006 Oct; 14(10):1789-94. PubMed ID: 17062809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can push-off be preserved during use of an ankle foot orthosis in children with hemiplegia? A prospective controlled study.
    Desloovere K; Molenaers G; Van Gestel L; Huenaerts C; Van Campenhout A; Callewaert B; Van de Walle P; Seyler J
    Gait Posture; 2006 Oct; 24(2):142-51. PubMed ID: 16934470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait evaluation of an automatic stance-control knee orthosis in a patient with postpoliomyelitis.
    Hebert JS; Liggins AB
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1676-80. PubMed ID: 16084826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.