BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 6840848)

  • 1. Inhibition of Chlamydia psittaci in oxidatively active thioglycolate-elicited macrophages: distinction between lymphokine-mediated oxygen-dependent and oxygen-independent macrophage activation.
    Byrne GI; Faubion CL
    Infect Immun; 1983 May; 40(2):464-71. PubMed ID: 6840848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphokine-mediated microbistatic mechanisms restrict Chlamydia psittaci growth in macrophages.
    Byrne GI; Faubion CL
    J Immunol; 1982 Jan; 128(1):469-74. PubMed ID: 7054284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen-independent inhibition of intracellular Chlamydia psittaci growth by human monocytes and interferon-gamma-activated macrophages.
    Rothermel CD; Rubin BY; Jaffe EA; Murray HW
    J Immunol; 1986 Jul; 137(2):689-92. PubMed ID: 3088106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lymphokine stimulated macrophages inhibit intracellular Chlamydia psittaci replication by mechanisms distinct from intracellular inhibition of Toxoplasma gondii replication.
    Byrne GI; Murray HW
    Adv Exp Med Biol; 1983; 162():361-4. PubMed ID: 6869092
    [No Abstract]   [Full Text] [Related]  

  • 5. Gamma-interferon is the factor in lymphokine that activates human macrophages to inhibit intracellular Chlamydia psittaci replication.
    Rothermel CD; Rubin BY; Murray HW
    J Immunol; 1983 Nov; 131(5):2542-4. PubMed ID: 6313807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation.
    Murray HW; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1596-609. PubMed ID: 6256463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of lymphokines and lipopolysaccharides on macrophage chemiluminescence. Appearance of spontaneous chemiluminescence and its correlation with cytotoxicity.
    Muto S; Ogino H; Yuki H
    J Immunol Methods; 1988 Jun; 111(1):51-7. PubMed ID: 3392398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymphokine-mediated inhibition of Chlamydia replication in mouse fibroblasts is neutralized by anti-gamma interferon immunoglobulin.
    Byrne GI; Krueger DA
    Infect Immun; 1983 Dec; 42(3):1152-8. PubMed ID: 6417024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo-activated mononuclear phagocytes and protective immunity to chlamydiae in mice.
    Huebner RE; Byrne GI
    Infect Immun; 1988 Jun; 56(6):1492-9. PubMed ID: 3131246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage activation for tumor cytotoxicity: induction of macrophage tumoricidal activity by lymphokines from EL-4, a continuous T cell line.
    Meltzer MS; Benjamin WR; Farrar JJ
    J Immunol; 1982 Dec; 129(6):2802-7. PubMed ID: 6982943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of action of lymphokines. IX. The enzymatic basis of hydrogen peroxide production by lymphokine-activated macrophages.
    Freund M; Pick E
    J Immunol; 1986 Aug; 137(4):1312-8. PubMed ID: 3016093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidacidal mechanisms of peritoneal macrophages activated with lymphokines or gamma-interferon.
    Brummer E; Stevens DA
    J Med Microbiol; 1989 Mar; 28(3):173-81. PubMed ID: 2494342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of immune interferon (IFN-gamma) in lymphokine-induced anti-toxoplasma activity: studies with recombinant murine IFN-gamma.
    Sethi KK; Omata Y; Brandis H
    Immunobiology; 1985 Nov; 170(4):270-83. PubMed ID: 3936779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates.
    Murray HW; Nathan CF; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1610-24. PubMed ID: 7452149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and rapid method for the determination of macrophage activating factor involving a new type of apparatus suitable for the measurement of macrophage chemiluminescence.
    Muto S; Igarashi K; Matsumoto Y; Ogino H; Yuki H
    J Immunol Methods; 1986 Jun; 90(1):51-6. PubMed ID: 3519778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LPS inhibits the intracellular growth of Legionella pneumophila in thioglycolate elicited murine peritoneal macrophages by iron-dependent, tryptophan-independent, oxygen-independent, and arginine-independent mechanisms.
    Gebran SJ; Yamamoto Y; Newton C; Tomioka M; Widen R; Klein TW; Friedman H
    J Leukoc Biol; 1995 Jan; 57(1):80-7. PubMed ID: 7829975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Chlamydia psittaci with mouse peritoneal macrophages.
    Wyrick PB; Brownridge EA; Ivins BE
    Infect Immun; 1978 Mar; 19(3):1061-7. PubMed ID: 565339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage activation to kill Leishmania tropica: kinetics of macrophage response to lymphokines that induce antimicrobial activities against amastigotes.
    Oster CN; Nacy CA
    J Immunol; 1984 Mar; 132(3):1494-500. PubMed ID: 6363544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii.
    Sibley LD; Krahenbuhl JL; Weidner E
    Infect Immun; 1985 Sep; 49(3):760-4. PubMed ID: 4030103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential modulation of lymphocyte proliferative responses and lymphokine secretion in mice during development of immunity to Chlamydia psittaci.
    Guagliardi LE; Byrne GI; Paulnock DM
    Infect Immun; 1989 May; 57(5):1561-7. PubMed ID: 2496033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.