These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 6841004)
1. Aerobic responses of the cornea to alkali measured in vivo. Mauger TF; Hill RM Invest Ophthalmol Vis Sci; 1983 May; 24(5):582-5. PubMed ID: 6841004 [TBL] [Abstract][Full Text] [Related]
2. Aerobic responses of the cornea to isopropyl alcohol, measured in vivo. Roseman MJ; Hill RM Acta Ophthalmol (Copenh); 1987 Jun; 65(3):306-12. PubMed ID: 3618154 [TBL] [Abstract][Full Text] [Related]
3. Corneal responses to acid measured in vivo. Flynn WJ; King JE; Hill RM Am J Optom Physiol Opt; 1985 Mar; 62(3):217-21. PubMed ID: 3985115 [TBL] [Abstract][Full Text] [Related]
4. Aerobic responses of the cornea to ophthalmic preservatives, measured in vivo. Burton GD; Hill RM Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):842-5. PubMed ID: 7309434 [TBL] [Abstract][Full Text] [Related]
5. [Effect of eledoisin on the process of corneal repair in rabbits]. Bevilacqua R; Cantalamessa F; Maggi L; Massi M; Micossi LG; Perfumi M Boll Soc Ital Biol Sper; 1979 May; 55(9):914-9. PubMed ID: 553618 [TBL] [Abstract][Full Text] [Related]
6. Alkali burn-induced synthesis of inflammatory eicosanoids in rabbit corneal epithelium. Conners MS; Urbano F; Vafeas C; Stoltz RA; Dunn MW; Schwartzman ML Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1963-71. PubMed ID: 9331260 [TBL] [Abstract][Full Text] [Related]
7. Corneal burns: a quantitative comparison of acid and base. Flynn WJ; Mauger TF; Hill RM Acta Ophthalmol (Copenh); 1984 Aug; 62(4):542-8. PubMed ID: 6485752 [TBL] [Abstract][Full Text] [Related]
8. Oxygen consumption of the rabbit cornea. Harvitt DM; Bonanno JA Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):444-8. PubMed ID: 9478006 [TBL] [Abstract][Full Text] [Related]
9. Oxygen therapy for severe corneal alkali burn in rabbits. Sharifipour F; Zamani M; Idani E; Hemmati AA Cornea; 2007 Oct; 26(9):1107-10. PubMed ID: 17893544 [TBL] [Abstract][Full Text] [Related]
10. The behaviour of corneal epithelium following a standardized alkali wound. Chung JH; Fagerholm P; Lindström B Acta Ophthalmol (Copenh); 1987 Oct; 65(5):529-37. PubMed ID: 3425261 [TBL] [Abstract][Full Text] [Related]
11. Area and depth of surfactant-induced corneal injury predicts extent of subsequent ocular responses. Jester JV; Petroll WM; Bean J; Parker RD; Carr GJ; Cavanagh HD; Maurer JK Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2610-25. PubMed ID: 9856771 [TBL] [Abstract][Full Text] [Related]
12. Effect of different irrigating solutions on aqueous humour pH changes, intraocular pressure and histological findings after induced alkali burns. Kompa S; Redbrake C; Hilgers C; Wüstemeyer H; Schrage N; Remky A Acta Ophthalmol Scand; 2005 Aug; 83(4):467-70. PubMed ID: 16029272 [TBL] [Abstract][Full Text] [Related]
13. Extent of corneal injury as a biomarker for hazard assessment and the development of alternative models to the Draize rabbit eye test. Jester JV Cutan Ocul Toxicol; 2006; 25(1):41-54. PubMed ID: 16702053 [TBL] [Abstract][Full Text] [Related]
14. Confocal microscopic characterization of initial corneal changes of surfactant-induced eye irritation in the rabbit. Maurer JK; Li HF; Petroll WM; Parker RD; Cavanagh HD; Jester JV Toxicol Appl Pharmacol; 1997 Apr; 143(2):291-300. PubMed ID: 9144446 [TBL] [Abstract][Full Text] [Related]
15. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea. Huang Y; Meek KM; Ho MW; Paterson CA Exp Eye Res; 2001 Oct; 73(4):521-32. PubMed ID: 11825023 [TBL] [Abstract][Full Text] [Related]
16. Corneal transparency changes resulting from osmotic stress. Stevenson R; Vaja N; Jackson J Ophthalmic Physiol Opt; 1983; 3(1):33-9. PubMed ID: 6866520 [TBL] [Abstract][Full Text] [Related]
17. [An ultrastructure and proteoglycan study of experimental alkali burned cornea of the rabbit]. Yan ZG; Ge RC; Zhang LZ Zhonghua Yan Ke Za Zhi; 1994 Jul; 30(4):305-7. PubMed ID: 7843027 [TBL] [Abstract][Full Text] [Related]
18. Effect of heptanol on the short circuit currents of cornea and ciliary body demonstrates rate limiting role of heterocellular gap junctions in active ciliary body transport. Wolosin JM; Candia OA; Peterson-Yantorno K; Civan MM; Shi XP Exp Eye Res; 1997 Jun; 64(6):945-52. PubMed ID: 9301475 [TBL] [Abstract][Full Text] [Related]