These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6841323)

  • 1. Electron microscopic study on the structures formed by mixtures containing synthetic glyceroglycolipids.
    Endo T; Inoue K; Nojima S; Sekiya T; Ohki K; Nozawa Y
    J Biochem; 1983 Jan; 93(1):1-6. PubMed ID: 6841323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties and barrier functions of synthetic glyceroglycolipids.
    Endo T; Inoue K; Nojima S
    J Biochem; 1982 Sep; 92(3):953-60. PubMed ID: 7142129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of dicarboxylic phosphatidylcholines on phosphatidylcholine liposomes as revealed by gel chromatography and electron microscopy.
    Dousset N; Lapchine L; Dousset JC; Douste-Blazy L
    Biochim Biophys Acta; 1982 Nov; 692(2):223-30. PubMed ID: 6897363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase behaviour of mixtures of lipid X with phosphatidylcholine and phosphatidylethanolamine.
    Lipka G; Hauser H
    Biochim Biophys Acta; 1989 Feb; 979(2):239-50. PubMed ID: 2923879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of lipid phase behavior with membrane-bound cryoprotectants.
    Goodrich RP; Handel TM; Baldeschwieler JD
    Biochim Biophys Acta; 1988 Feb; 938(2):143-54. PubMed ID: 3342228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphatidylinositol replacement by diacylglycerol on various physical properties of artificial membranes with respect to the role of phosphatidylinositol response.
    Ohki K; Sekiya T; Yamauchi T; Nozawa Y
    Biochim Biophys Acta; 1982 Dec; 693(2):341-50. PubMed ID: 6297556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol.
    Copeland BR; McConnel HM
    Biochim Biophys Acta; 1980 Jun; 599(1):95-109. PubMed ID: 7397161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical properties of phosphatidylcholine-phosphatidylinositol liposomes in relation to a calcium effect.
    Ohki K; Sekiya T; Yamauchi T; Nozawa Y
    Biochim Biophys Acta; 1981 Jun; 644(2):165-74. PubMed ID: 6266466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology of the intermediate stages in the lamellar to hexagonal lipid phase transition.
    Borovjagin VL; Vergara JA; McIntosh TJ
    J Membr Biol; 1982; 69(3):199-212. PubMed ID: 7143432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ripple phases induced by alpha-tocopherol in saturated diacylphosphatidylcholines.
    Wang X; Semmler K; Richter W; Quinn PJ
    Arch Biochem Biophys; 2000 May; 377(2):304-14. PubMed ID: 10845708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral phase separations in binary mixtures of phospholipids having different charges and different crystalline structures.
    Luna EJ; McConnell HM
    Biochim Biophys Acta; 1977 Oct; 470(2):303-16. PubMed ID: 578776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous vesiculation of uncharged phospholipid dispersions consisting of lecithin and lysolecithin.
    Hauser H
    Chem Phys Lipids; 1987 May; 43(4):283-99. PubMed ID: 3607970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrier characteristics of membrane model systems containing unsaturated phosphatidylethanolamines.
    Noordam PC; van Echteld CJ; de Kruijff B; Verkleij AJ; de Gier J
    Chem Phys Lipids; 1980 Oct; 27(3):221-32. PubMed ID: 7418115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macro-ripple phase formation in bilayers composed of galactosylceramide and phosphatidylcholine.
    Brown RE; Anderson WH; Kulkarni VS
    Biophys J; 1995 Apr; 68(4):1396-405. PubMed ID: 7787025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretransition-ripples in bilayers of dipalmitoylphosphatidylcholine: undulation or periodic segments? A freeze-fracture study.
    Meyer HW
    Biochim Biophys Acta; 1996 Jul; 1302(2):138-44. PubMed ID: 8695663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol-induced aggregation and fusion of small phosphatidylcholine liposome: participation of interdigitated membrane formation in their processes.
    Komatsu H; Okada S
    Biochim Biophys Acta; 1995 May; 1235(2):270-80. PubMed ID: 7756335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems.
    Sen A; Williams WP; Quinn PJ
    Biochim Biophys Acta; 1981 Feb; 663(2):380-9. PubMed ID: 7213776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent cations and chlorpromazine can induce non-bilayer structures in phosphatidic acid-containing model membranes.
    Verkleij AJ; De Maagd R; Leunissen-Bijvelt J; De Kruijff B
    Biochim Biophys Acta; 1982 Jan; 684(2):255-62. PubMed ID: 7055567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol.
    Quinn PJ; Takahashi H; Hatta I
    Biophys J; 1995 Apr; 68(4):1374-82. PubMed ID: 7787023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilayer nanotubes and helical ribbons formed by hydrated galactosylceramides: acyl chain and headgroup effects.
    Kulkarni VS; Anderson WH; Brown RE
    Biophys J; 1995 Nov; 69(5):1976-86. PubMed ID: 8580341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.