These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6841372)

  • 1. Preparation of etched tantalum semimicro capacitor stimulation electrodes.
    Robblee LS; Kelliher EM; Langmuir ME; Vartanian H; McHardy J
    J Biomed Mater Res; 1983 Mar; 17(2):327-43. PubMed ID: 6841372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology, and histology.
    Johnson PF; Bernstein JJ; Hunter G; Dawson WW; Hench LL
    J Biomed Mater Res; 1977 Sep; 11(5):637-56. PubMed ID: 893487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of surface treatments on anodic oxide film growth and electrochemical properties of tantalum used for biomedical applications.
    Silva RA; Silva IP; Rondot B
    J Biomater Appl; 2006 Jul; 21(1):93-103. PubMed ID: 16443631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of low charge injection densities on corrosion responses of pulsed 316LVM stainless steel electrodes.
    Riedy LW; Walter JS
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):660-3. PubMed ID: 8987272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses.
    Rose TL; Robblee LS
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1118-20. PubMed ID: 2276759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface examination of electrodes of removed implants.
    Rozman J; Pihlar B; Strojnik P
    Scand J Rehabil Med Suppl; 1988; 17():99-103. PubMed ID: 3261042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitor electrode stimulates nerve or muscle without oxidation-reduction reactions.
    Guyton DL; Hambrecht FT
    Science; 1973 Jul; 181(4094):74-6. PubMed ID: 4197450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical stimulation of isolated retina with microwire glass electrodes.
    Johnson L; Perkins FK; O'Hearn T; Skeath P; Merritt C; Frieble J; Sadda S; Humayun M; Scribner D
    J Neurosci Methods; 2004 Aug; 137(2):265-73. PubMed ID: 15262070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.
    Maruyama K; Ohkawa H; Ogawa S; Ueda A; Niwa O; Suzuki K
    Anal Chem; 2006 Mar; 78(6):1904-12. PubMed ID: 16536427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 100 electrode intracortical array: structural variability.
    Campbell PK; Jones KE; Normann RA
    Biomed Sci Instrum; 1990; 26():161-5. PubMed ID: 2334761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 316LVM and MP35N alloys as charge injection electrodes.
    Cogan SF; Jones GS; Hills DV; Walter JS; Riedy LW
    J Biomed Mater Res; 1994 Feb; 28(2):233-40. PubMed ID: 8207036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of capacitor electrodes for intracortical neural stimulation.
    Rose TL; Kelliher EM; Robblee LS
    J Neurosci Methods; 1985 Jan; 12(3):181-93. PubMed ID: 2984478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array.
    Campbell PK; Jones KE; Huber RJ; Horch KW; Normann RA
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):758-68. PubMed ID: 1937509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.
    Wei L; Nitta N; Yushin G
    ACS Nano; 2013 Aug; 7(8):6498-506. PubMed ID: 23815346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro measurement and characterization of current density profiles produced by non-recessed, simple recessed, and radially varying recessed stimulating electrodes.
    Suesserman MF; Spelman FA; Rubinstein JT
    IEEE Trans Biomed Eng; 1991 May; 38(5):401-8. PubMed ID: 1874521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ta2O5-Incorporated WO3 nanocomposite film for improved electrochromic performance in an acidic condition.
    Shim HS; Ahn HJ; Kim YS; Sung YE; Kim WB
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3572-6. PubMed ID: 17252814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.